Journal of Cancer Research and Clinical Oncology

, Volume 139, Issue 10, pp 1757–1770 | Cite as

Autoantibody biomarkers identified by proteomics methods distinguish ovarian cancer from non-ovarian cancer with various CA-125 levels

  • Aykan A. Karabudak
  • Julie Hafner
  • Vivekananda Shetty
  • Songming Chen
  • Angeles Alvarez Secord
  • Michael A. Morse
  • Ramila Philip
Original Paper



CA-125 has been a valuable marker for detecting ovarian cancer, however, it is not sensitive enough to detect early-stage disease and not specific to ovarian cancer. The purpose of our study was to identify autoantibody markers that are specific to ovarian cancer regardless of CA-125 levels.


Top-down and iTRAQ quantitative proteomics methods were used to identify high-frequency autoantibodies in ovarian cancer. Protein microarrays comprising the recombinant autoantigens were screened using serum samples from various stages of ovarian cancer with diverse levels of CA-125 as well as benign and healthy controls. ROC curve and dot blot analyses were performed to validate the sensitivity and specificity of the autoantibody markers.


The proteomics methodologies identified more than 60 potential high-frequency autoantibodies in ovarian cancer. Individual serum samples from ovarian cancer stages I–IV compared to control samples that were screened on a microarray containing native recombinant autoantigens revealed a panel of stage I high-frequency autoantibodies. Preliminary ROC curve and dot blot analyses performed with the ovarian cancer samples showed higher specificity and sensitivity as compared to CA-125. Three autoantibody markers exhibited higher specificity in various stages of ovarian cancer with low and normal CA-125 levels.


Proteomics technologies are suitable for the identification of protein biomarkers and also the identification of autoantibody biomarkers when combined with protein microarray screening. Using native recombinant autoantigen arrays to screen autoantibody markers, it is possible to identify markers with higher sensitivity and specificity than CA-125 that are relevant to early detection of ovarian cancer.


Proteomics iTRAQ Autoantibodies Biomarkers Microarray Dot blot 



This work was supported by USAMRAA Grant W81XWH-10-1-0307.

Conflict of interest

No actual or potential conflict of interest in relation to this article exists.

Supplementary material

432_2013_1501_MOESM1_ESM.doc (67 kb)
Supplementary material 1 (DOC 67 kb)


  1. Abendstein B, Marth C, Muller-Holzner E, Widschwendter M, Daxenbichler G, Zeimet AG (2000) Clinical significance of serum and ascitic p53 autoantibodies in epithelial ovarian carcinoma. Cancer 88(6):1432–1437PubMedCrossRefGoogle Scholar
  2. Aggarwal K, Choe LH, Lee KH (2005) Quantitative analysis of protein expression using amine-specific isobaric tags in Escherichia coli cells expressing rhsA elements. Proteomics 5(9):2297–2308PubMedCrossRefGoogle Scholar
  3. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867PubMedCrossRefGoogle Scholar
  4. Anderson KS, LaBaer J (2005) The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 4(4):1123–1133PubMedCrossRefGoogle Scholar
  5. Blaes F, Klotz M, Huwer H, Straub U, Kalweit G, Schimrigk K, Schafers HJ (2000) Antineural and antinuclear autoantibodies are of prognostic relevance in non-small cell lung cancer. Ann Thorac Surg 69(1):254–258PubMedCrossRefGoogle Scholar
  6. Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG, Hanash SM (2001) An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci USA 98(17):9824–9829PubMedCrossRefGoogle Scholar
  7. Burnham TK (1972) Antinuclear antibodies in patients with malignancies. Lancet 2(7774):436PubMedCrossRefGoogle Scholar
  8. Caiazzo RJ Jr, O’Rourke DJ, Barder TJ, Nelson BP, Liu BC (2011) Native antigen fractionation protein microarrays for biomarker discovery. Methods Mol Biol (Clifton, NJ) 723:129–148CrossRefGoogle Scholar
  9. Canelle L, Bousquet J, Pionneau C, Deneux L, Imam-Sghiouar N, Caron M, Joubert-Caron R (2005) An efficient proteomics-based approach for the screening of autoantibodies. J Immunol Methods 299(1–2):77–89. doi: 10.1016/j.jim.2005.01.015 Google Scholar
  10. Caron M, Choquet-Kastylevsky G, Joubert-Caron R (2007) Cancer Immunomics Using Autoantibody Signatures for Biomarker Discovery. Mol Cell Proteomics 6(7):1115–1122PubMedCrossRefGoogle Scholar
  11. Chaib H, Rubin MA, Mucci NR, Li L, Taylor JMG, Day ML, Rhim JS, Macoska JA (2001) Activated in prostate cancer: a PDZ domain-containing protein highly expressed in human primary prostate tumors. Cancer Res 61(6):2390–2394PubMedGoogle Scholar
  12. Chatterjee M, Mohapatra S, Ionan A, Bawa G, Ali-Fehmi R, Wang X, Nowak J, Ye B, Nahhas FA, Lu K, Witkin SS, Fishman D, Munkarah A, Morris R, Levin NK, Shirley NN, Tromp G, Abrams J, Draghici S, Tainsky MA (2006) Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res 66(2):1181–1190PubMedCrossRefGoogle Scholar
  13. Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, Brand RE, Haab BB (2007) Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 4(5):437–444. doi: 10.1038/nmeth1035 Google Scholar
  14. Chen Z, Fadiel A, Feng Y, Ohtani K, Rutherford T, Naftolin F (2001) Ovarian epithelial carcinoma tyrosine phosphorylation, cell proliferation, and ezrin translocation are stimulated by interleukin 1alpha and epidermal growth factor. Cancer 92(12):3068–3075PubMedCrossRefGoogle Scholar
  15. Ehrlich JR, Qin S, Liu BC (2006) The ‘reverse capture’ autoantibody microarray: a native antigen-based platform for autoantibody profiling. Nat Protoc 1(1):452–460PubMedCrossRefGoogle Scholar
  16. Ferrini R (1997) Screening asymptomatic women for ovarian cancer: American College of Preventive Medicine practice policy. Am J Prev Med 13(6):444–446PubMedGoogle Scholar
  17. Fossa A, Alsoe L, Crameri R, Funderud S, Gaudernack G, Smeland EB (2004) Serological cloning of cancer/testis antigens expressed in prostate cancer using cDNA phage surface display. Cancer Immunol Immunother 53(5):431–438PubMedCrossRefGoogle Scholar
  18. Gagnon A, Kim JH, Schorge JO, Ye B, Liu B, Hasselblatt K, Welch WR, Bandera CA, Mok SC (2008) Use of a combination of approaches to identify and validate relevant tumor-associated antigens and their corresponding autoantibodies in ovarian cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res 14(3):764–771CrossRefGoogle Scholar
  19. Gautreau A, Louvard D, Arpin M (2002) ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr Opin Cell Biol 14(1):104–109PubMedCrossRefGoogle Scholar
  20. Gercel-Taylor C, Bazzett LB, Taylor DD (2001) Presence of aberrant tumor-reactive immunoglobulins in the circulation of patients with ovarian cancer. Gynecol Oncol 81(1):71–76PubMedCrossRefGoogle Scholar
  21. Gure AO, Altorki NK, Stockert E, Scanlan MJ, Old LJ, Chen YT (1998) Human lung cancer antigens recognized by autologous antibodies: definition of a novel cDNA derived from the tumor suppressor gene locus on chromosome 3p21.3. Cancer Res 58(5):1034–1041PubMedGoogle Scholar
  22. Haab BB (2005) Antibody arrays in cancer research. Mol Cell Proteomics 4(4):377–383PubMedCrossRefGoogle Scholar
  23. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  24. Hays JL, Kim G, Giuroiu I, Kohn EC (2010) Proteomics and ovarian cancer: integrating proteomics information into clinical care. J Proteomics 73(10):1864–1872PubMedCrossRefGoogle Scholar
  25. Hirasawa Y, Kohno N, Yokoyama A, Kondo K, Hiwada K, Miyake M (2000) Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer. Am J Respir Crit Care Med 161(2 Pt 1):589–594PubMedCrossRefGoogle Scholar
  26. Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P (2005) Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 16(2):649–664PubMedCrossRefGoogle Scholar
  27. Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D, Arand M, Wada H, Noguchi Y, Stockert E, Old LJ, Knuth A (1998) Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 187(2):265–270PubMedCrossRefGoogle Scholar
  28. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60(5):277–300PubMedCrossRefGoogle Scholar
  29. Le Naour F, Brichory F, Misek DE, Brechot C, Hanash SM, Beretta L (2002) A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics 1(3):197–203PubMedCrossRefGoogle Scholar
  30. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331PubMedCrossRefGoogle Scholar
  31. Li M, Yin J, Mao N, Pan L (2013) Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol Rep 29(1):58–66PubMedGoogle Scholar
  32. Luborsky JL, Barua A, Shatavi SV, Kebede T, Abramowicz J, Rotmensch J (2005) Anti-tumor antibodies in ovarian cancer. Am J Reprod Immunol 54(2):55–62PubMedCrossRefGoogle Scholar
  33. Luo LY, Herrera I, Soosaipillai A, Diamandis EP (2002) Identification of heat shock protein 90 and other proteins as tumour antigens by serological screening of an ovarian carcinoma expression library. Br J Cancer 87(3):339–343PubMedCrossRefGoogle Scholar
  34. Maddison P, Newsom-Davis J, Mills KR, Souhami RL (1999) Favourable prognosis in Lambert-Eaton myasthenic syndrome and small-cell lung carcinoma. Lancet 353(9147):117–118PubMedCrossRefGoogle Scholar
  35. Mor G, Visintin I, Lai Y, Zhao H, Schwartz P, Rutherford T, Yue L, Bray-Ward P, Ward DC (2005) Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci U S A 102(21):7677–7682PubMedCrossRefGoogle Scholar
  36. Mueller-Pillasch F, Lacher U, Wallrapp C, Micha A, Zimmerhackl F, Hameister H, Varga G, Friess H, Buchler M, Beger HG, Vila MR, Adler G, Gress TM (1997) Cloning of a gene highly over-expressed in cancer coding for a novel KH-domain containing protein. Oncogene 14(22):2729–2733PubMedCrossRefGoogle Scholar
  37. Naora H, Montz FJ, Chai CY, Roden RB (2001) Aberrant expression of homeobox gene HOXA7 is associated with mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc Natl Acad Sci USA 98(26):15209–15214PubMedCrossRefGoogle Scholar
  38. Nesterova M, Johnson N, Cheadle C, Cho-Chung YS (2006) Autoantibody biomarker opens a new gateway for cancer diagnosis. Biochim Biophys Acta 1762(4):398–403PubMedCrossRefGoogle Scholar
  39. Nishimura S, Tsuda H, Kataoka F, Arao T, Nomura H, Chiyoda T, Susumu N, Nishio K, Aoki D (2011) Over-expression of cofilin 1 can predict progression-free survival in patients with epithelial ovarian cancer receiving standard therapy. Hum Pathol 42(4):516–521PubMedCrossRefGoogle Scholar
  40. Nossov V, Amneus M, Su F, Lang J, Janco JM, Reddy ST, Farias-Eisner R (2008) The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am J Obstet Gynecol 199(3):215–223PubMedCrossRefGoogle Scholar
  41. Ohtani K, Sakamoto H, Rutherford T, Chen Z, Satoh K, Naftolin F (1999) Ezrin, a membrane-cytoskeletal linking protein, is involved in the process of invasion of endometrial cancer cells. Cancer Lett 147(1–2):31–38PubMedCrossRefGoogle Scholar
  42. Old LJ, Chen YT (1998) New paths in human cancer serology. J Exp Med 187(8):1163–1167PubMedCrossRefGoogle Scholar
  43. Partridge E, Kreimer AR, Greenlee RT, Williams C, Xu JL, Church TR, Kessel B, Johnson CC, Weissfeld JL, Isaacs C, Andriole GL, Ogden S, Ragard LR, Buys SS (2009) Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol 113(4):775–782PubMedGoogle Scholar
  44. Piver MS, Wong C (1998) Role of prophylactic surgery for women with genetic predisposition to cancer. Clin Obstet Gynecol 41(1):215–224PubMedCrossRefGoogle Scholar
  45. Polesello C, Delon I, Valenti P, Ferrer P, Payre F (2002) Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nat Cell Biol 4(10):782–789PubMedCrossRefGoogle Scholar
  46. Robinson C, Callow M, Stevenson S, Scott B, Robinson BW, Lake RA (2000) Serologic responses in patients with malignant mesothelioma: evidence for both public and private specificities. Am J Respir Cell Mol Biol 22(5):550–556PubMedCrossRefGoogle Scholar
  47. Rosen DG, Wang L, Atkinson JN, Yu Y, Lu KH, Diamandis EP, Hellstrom I, Mok SC, Liu J, Bast RC Jr (2005) Potential markers that complement expression of CA-125 in epithelial ovarian cancer. Gynecol Oncol 99(2):267–277PubMedCrossRefGoogle Scholar
  48. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169PubMedCrossRefGoogle Scholar
  49. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92(25):11810–11813PubMedCrossRefGoogle Scholar
  50. Sasaroli DCG, Scholler N (2009) Beyond CA-125: the coming of age of ovarian cancer biomarkers. Are we there yet? Biomark Med 3:275–288PubMedCrossRefGoogle Scholar
  51. Shetty V, Hafner J, Shah P, Nickens Z, Philip R (2012) Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics. Clin Proteomics 9(1):10PubMedCrossRefGoogle Scholar
  52. Song J, Fadiel A, Edusa V, Chen Z, So J, Sakamoto H, Fishman DA, Naftolin F (2005) Estradiol-induced ezrin over-expression in ovarian cancer: a new signaling domain for estrogen. Cancer Lett 220(1):57–65PubMedCrossRefGoogle Scholar
  53. Soussi T (2000) p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res 60(7):1777–1788PubMedGoogle Scholar
  54. Suzuki H, Akakura K, Igarashi T, Ueda T, Ito H, Watanabe M, Nomura F, Ochiai T, Shimada H (2004) Clinical usefulness of serum antip53 antibodies for prostate cancer detection: a comparative study with prostate specific antigen parameters. J Urol 171(1):182–186PubMedCrossRefGoogle Scholar
  55. Tan EM (1991) Autoantibodies in pathology and cell biology. Cell 67(5):841–842PubMedCrossRefGoogle Scholar
  56. Tan EM, Chan EK, Sullivan KF, Rubin RL (1988) Antinuclear antibodies (ANAs): diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity. Clin Immunol Immunopathol 47(2):121–141PubMedCrossRefGoogle Scholar
  57. Taylor DD, Gercel-Taylor C (1998) Tumor-reactive immunoglobulins in ovarian cancer: diagnostic and therapeutic significance? (review). Oncol Rep 5(6):1519–1524PubMedGoogle Scholar
  58. Taylor DD, Gercel-Taylor C, Parker LP (2009) Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer. Gynecol Oncol 115(1):112–120PubMedCrossRefGoogle Scholar
  59. Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9(4):138–141PubMedCrossRefGoogle Scholar
  60. Vogl FD, Stickeler E, Weyermann M, Kohler T, Grill HJ, Negri G, Kreienberg R, Runnebaum IB (1999) p53 autoantibodies in patients with primary ovarian cancer are associated with higher age, advanced stage and a higher proportion of p53-positive tumor cells. Oncology 57(4):324–329PubMedCrossRefGoogle Scholar
  61. Vogl FD, Frey M, Kreienberg R, Runnebaum IB (2000) Autoimmunity against p53 predicts invasive cancer with poor survival in patients with an ovarian mass. Br J Cancer 83(10):1338–1343PubMedCrossRefGoogle Scholar
  62. von Mensdorff-Pouilly S, Petrakou E, Kenemans P, van Uffelen K, Verstraeten AA, Snijdewint FG, van Kamp GJ, Schol DJ, Reis CA, Price MR, Livingston PO, Hilgers J (2000) Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides. Int J Cancer 86(5):702–712CrossRefGoogle Scholar
  63. Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, Mehra R, Montie JE, Pienta KJ, Sanda MG, Kantoff PW, Rubin MA, Wei JT, Ghosh D, Chinnaiyan AM (2005) Autoantibody signatures in prostate cancer. N Engl J Med 353(12):1224–1235PubMedCrossRefGoogle Scholar
  64. Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T, Condeelis J (2005) Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168(3):441–452PubMedCrossRefGoogle Scholar
  65. Yamamoto A, Shimizu E, Ogura T, Sone S (1996) Detection of auto-antibodies against L-myc oncogene products in sera from lung cancer patients. Int J Cancer 69(4):283–289PubMedCrossRefGoogle Scholar
  66. Yap CT, Simpson TI, Pratt T, Price DJ, Maciver SK (2005) The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motil Cytoskelet 60(3):153–165CrossRefGoogle Scholar
  67. Zhang JY, Casiano CA, Peng XX, Koziol JA, Chan EK, Tan EM (2003) Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol Biomarkers Prev 12(2):136–143PubMedGoogle Scholar
  68. Zhang Z, Bast RC Jr, Yu Y, Li J, Sokoll LJ, Rai AJ, Rosenzweig JM, Cameron B, Wang YY, Meng XY, Berchuck A, Van Haaften-Day C, Hacker NF, de Bruijn HW, van der Zee AG, Jacobs IJ, Fung ET, Chan DW (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64(16):5882–5890PubMedCrossRefGoogle Scholar
  69. Zhu B, Fukada K, Zhu H, Kyprianou N (2006) Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells. Cancer Res 66(17):8640–8647PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aykan A. Karabudak
    • 1
  • Julie Hafner
    • 1
  • Vivekananda Shetty
    • 1
  • Songming Chen
    • 3
  • Angeles Alvarez Secord
    • 2
  • Michael A. Morse
    • 2
  • Ramila Philip
    • 1
  1. 1.Immunotope, Inc.DoylestownUSA
  2. 2.Duke UniversityDurhamUSA
  3. 3.Institute of Hepatitis and Virus ResearchDoylestownUSA

Personalised recommendations