Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 138, Issue 11, pp 1831–1844 | Cite as

Olea europaea leaf extract alters microRNA expression in human glioblastoma cells

  • Berrin Tunca
  • Gulcin Tezcan
  • Gulsah Cecener
  • Unal Egeli
  • Secil Ak
  • Hulusi Malyer
  • Gulendam Tumen
  • Ayhan Bilir
Original Paper

Abstract

Purpose

Glioblastoma multiforme (GBM) is the most common and the most lethal form of primary malignant tumors in the central nervous system. There is an increasing need for the development of more efficient therapeutic approaches for the treatment of these patients. One of the most attractive cancer therapy methods to date is the induction of tumor cell death by certain phytochemicals. Interestingly, bioactive compounds have been shown to alter micro RNA (miRNA) expression involved in several biological processes at the posttranscriptional level. The present study aimed to evaluate whether Olea europaea leaf extract (OLE) has an anticancer effect and modulates miRNA expression in GBM.

Materials and methods

Firstly, the anti-proliferative activity of OLE and the nature of the interaction with temozolomide (TMZ) of OLE were tested in human glioblastoma cell line T98G cells by trypan blue and WST-1 assays and than realized miRNA PCR array analysis. Potential mRNA targets were analyzed bioinformatically.

Results

OLE exhibited anti-proliferative effects on T98G cell lines. Cells were treated with temozolomide (TMZ) in the presence OLE, and changes to miRNA expression levels were identified by PCR array analysis. miRNA target genes are involved in cell cycle and apoptotic pathways. Specifically, miR-181b, miR-153, miR-145, miR-137, and let-7d were significantly upregulated after treatment with both TMZ and OLE.

Conclusion

Our results suggest that OLE modulates the expression of some miRNAs related to anticancer activity in GBM and the response to TMZ. Further studies and validations are needed, but we suggest that OLE might be used for in vivo studies and future medical drug studies.

Keywords

Olea europaea leaf extract Temozolomide Glioblastoma multiforme MicroRNA 

Notes

Acknowledgments

We thank the Kale Naturel for kindly providing OLE and Prof. Turkkan Evrensel, Uludag University of Turkey, for kindly providing TMZ. This study was supported by a grant from the Scientific Research Projects Foundation (BAP) of the Uludag University of Turkey [Project No. UAP (T)-2010/7].

Conflict of interest

None.

References

  1. Abaza L, Talorete T, Yamada P, Kurita Y, Zarrouk M, Isoda H (2007) Induction of growth inhibition and differentiation of human leukemia HL-60 cells by a Tunisian Gerboui olive leaf extract. Biosci Biotechnol Biochem 71:1306–1312PubMedCrossRefGoogle Scholar
  2. Arola-Arnal A, Blade C (2011) Proanthocyanidins modulate microRNA expression in human HepG2 cells. PLoS ONE 6:e25982PubMedCrossRefGoogle Scholar
  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCrossRefGoogle Scholar
  4. Chen J, Xu X (2010) Diet, epigenetic, and cancer prevention. Adv Genet 71:237–255PubMedCrossRefGoogle Scholar
  5. Chiba Y, Hijikata T (2010) MicroRNAs and their therapeutic potential for human diseases: preface. J Pharmacol Sci 114:262–263PubMedCrossRefGoogle Scholar
  6. Chistiakov DA, Chekhonin VP (2012) Contribution of microRNAs to radio-and chemoresistance of brain tumors and their therapeutic potential. Eur J Pharmacol. doi: 10.1016/j.ejphar.2012.03.031
  7. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79PubMedCrossRefGoogle Scholar
  8. Craig WJ (1999) Health-promoting properties of common herbs. Am J Clin Nutr 70:491–495Google Scholar
  9. Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16:257–267PubMedCrossRefGoogle Scholar
  10. Fang X, Yoon JG, Li L, Yu W, Shao J, Hua D, Zheng S, Hood L, Goodlett DR, Foltz G, Lin B (2011) The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics 12:11PubMedCrossRefGoogle Scholar
  11. Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 223:102–115PubMedCrossRefGoogle Scholar
  12. Fares R, Bazzi S, Baydoun SE, Abdel-Massih RM (2011) The antioxidant and anti-proliferative activity of the Lebanese Olea europaea Extract. Plant Foods Hum Nutr 66:58–63PubMedCrossRefGoogle Scholar
  13. Ferdin J, Kunej T, Calin GA (2010) Non-coding RNAs: identification of cancer- associated microRNAs by gene profiling. Technol Cancer Res Treat 9:123–138PubMedGoogle Scholar
  14. Ferracin M, Pedriali M, Veronese A, Zagatti B, Gafà R, Magri E, Lunardi M, Munerato G, Querzoli G, Maestri I, Ulazzi L, Nenci I, Croce CM, Lanza G, Querzoli P, Negrini M (2011) MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J Pathol 225:43–53PubMedCrossRefGoogle Scholar
  15. Fu S, Arráez-Roman D, Segura-Carretero A, Menéndez JA, Menéndez-Gutiérrez MP, Micol V, Fernández-Gutiérrez A (2010) Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal Bioanal Chem 397:643–654PubMedCrossRefGoogle Scholar
  16. Gandellini P, Profumo V, Folini M, Zaffaroni N (2011) MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin Ther Targets 15:265–279PubMedCrossRefGoogle Scholar
  17. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27:40–48PubMedCrossRefGoogle Scholar
  18. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer 67:2456–2468Google Scholar
  19. Gilani A, Khan A, Shah A, Connor J, Jabeen Q (2005) Blood pressure lowering effect of olive is mediated through calcium channel blockade. Int J Food Sci Nutr 56:613–620PubMedCrossRefGoogle Scholar
  20. Han J, Talorete TP, Yamada P, Isoda H (2009) Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF- 7 cells. Cytotechnology 59:45–53PubMedCrossRefGoogle Scholar
  21. Hummel R, Hussey DJ, Haier J et al (2010) MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 46:298–311PubMedCrossRefGoogle Scholar
  22. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5:504–514PubMedCrossRefGoogle Scholar
  23. Juan ME, Wenzel U, Daniel H, Planas JM (2008) Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells. Mol Nutr Food Res 52:595–599PubMedCrossRefGoogle Scholar
  24. Kohyama N, Nagata T, Fujimoto S, Sekiya K (1997) Inhibition of arachidonate lipoxygenase activities by 2-(3, 4-dihydroxyphenyl) ethanol, a phenolic compound from olives. Biosci Biotechnol Biochem 61:347–350PubMedCrossRefGoogle Scholar
  25. Kurisawa M, Chung JE, Uyama H, Kobayashi S (2003) Enzymatic synthesis and antioxidant properties of poly(rutin). Biomacromolecules 4:1394–1399PubMedCrossRefGoogle Scholar
  26. Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, Park CK, Jung KH, Lee SK, Kim M, Roh JK (2011) Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol 102:19–24PubMedCrossRefGoogle Scholar
  27. Li L, Zhang H, Zhi R, Yuan S (2011) Down-regulation of some miRNAs by degrading their precursors contributes to anti-cancer effect of mistletoe lectin-I. Br J Pharmacol 162:349–364PubMedCrossRefGoogle Scholar
  28. Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80:1771–1792PubMedCrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Δ Δ C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  30. Manna C, Galletti P, Cucciolla V, Moltedo O, Leone A, Zappia V (1997) The protective effect of the olive oil polyphenol (3, 4- dihydroxyphenyl)-ethanol counteracts reactive oxygen metaboliteinduced cytotoxicity in Caco-2 cells. J Nutr 127:286–292PubMedGoogle Scholar
  31. Mans DR, da Roch AB, Schwartsmann G (2000) Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist 5:185–198PubMedCrossRefGoogle Scholar
  32. Micol V, Caturla N, Pérez-Fons L, Mas V, Pérez L, Estepa A (2005) The olive leaf extract exhibits antiviral activity against haemorrhagic septicemia rhabdovirus (VHSV). Antiviral Res 6:129–136CrossRefGoogle Scholar
  33. Mijatovic SA, Timotijevic GS, Miljkovic DM, Radovic JM, Maksimovic-Ivanic DD, Dekanski DP, Stosic-Grujicic SD (2011) Multiple antimelanoma potential of dry olive leaf extract. Int J Cancer 128:1955–1965PubMedCrossRefGoogle Scholar
  34. miRBase: the microRNA database. release 17; April 2011 [cited 2011 Sept 15]. Available from: http://www.mirbase.org
  35. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, Allgayer H (2011) Curcumin regulates miR- 21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31:185–197PubMedCrossRefGoogle Scholar
  36. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477PubMedCrossRefGoogle Scholar
  37. Nousis L, Doulias PT, Aligiannis N, Bazios D, Agalias A, Galaris D, Mitakou S (2005) DNA protecting and genotoxic effects of olive oil related components in cells exposed to hydrogen peroxide. Free Radic Rec 39:787–795CrossRefGoogle Scholar
  38. Novakova J, Slaby O, Vyzula R, Michalek J (2009) MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 386:1–5PubMedCrossRefGoogle Scholar
  39. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489PubMedGoogle Scholar
  40. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schüler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lütolf UM, Kleihuesi P (2005) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899CrossRefGoogle Scholar
  41. Omar SH (2010) Oleuropein in olive and its pharmacological effects. Sci Pharm 23:133–154CrossRefGoogle Scholar
  42. Qin S, Zhang C (2011) MicroRNAs in vascular disease. J Cardiovasc Pharmacol 57:8–12PubMedCrossRefGoogle Scholar
  43. Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB (2011) Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr 6:93–108PubMedCrossRefGoogle Scholar
  44. Reyes F, Centelles J, Lupianez J, Cascante M (2006) (2α, 3β)-2, 3-Dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells. FEBS Lett 580:6302–6310PubMedCrossRefGoogle Scholar
  45. Reyes-Zurita FJ, Pachón-Peña G, Lizárraga D, Rufino-Palomares EE, Cascante M, Lupiáñez JA (2011) The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer 27:154CrossRefGoogle Scholar
  46. Saija A, Trombetta D, Tomaino A, Lo Cascio R, Princi P, Uccella N, Bonina F, Castelli F (1998) In vitro evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol. Int J Pharmaceut 166:123–133CrossRefGoogle Scholar
  47. Saito K, Kohno M, Yoshizaki F, Niwano Y (2008) Extensive screening for edible herbal extracts with potent scavenging activity against superoxide anions. Plant Foods Hum Nutr 63:65–70PubMedCrossRefGoogle Scholar
  48. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887PubMedCrossRefGoogle Scholar
  49. Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S, Wehner R, Schackert G, Schackert HK, Fussel M et al (2007) Identification of SOX2 as a novel glioma-associated antigen and potential target for T cellbased immunotherapy. Br J Cancer 96:1293–1301PubMedCrossRefGoogle Scholar
  50. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13PubMedCrossRefGoogle Scholar
  51. Setzer WN, Setzer MC (2003) Plant-derived triterpenoids as potential antineoplastic agents. Mini Rev Med Chem 3:540–556PubMedCrossRefGoogle Scholar
  52. Sharon AR, Cindy DD (2011) MicroRNA, Nutrition, and Cancer Prevention American Society for nutrition. Adv Nutr 2:472–485Google Scholar
  53. Shi L, Cheng Z, Zhang J, Li R, Zhao P, FU Z, You Y (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193PubMedCrossRefGoogle Scholar
  54. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14PubMedCrossRefGoogle Scholar
  55. Singh RP, Dhanalakshmi S, Agarwal R (2002) Phytochemicals as cell cycle modulators—a less toxic approach in halting human cancers. Cell Cycle 1:156–161PubMedCrossRefGoogle Scholar
  56. Sreelatha S, Padma PR (2009) Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum Nutr 64:303–311PubMedCrossRefGoogle Scholar
  57. Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7:464–473PubMedCrossRefGoogle Scholar
  58. Tabera J, Guinda A, Ruiz-Rodriguez A, Señoráns FJ, Ibáñez E, Albi T, Reglero G (2004) Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J Agric Food Chem 52:4774–4779PubMedCrossRefGoogle Scholar
  59. Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21:140–146PubMedCrossRefGoogle Scholar
  60. Visioli F, Galli C (1994) Oleuropein protects low density lipoprotein from oxidation. Life Sci 55:1965–1971PubMedCrossRefGoogle Scholar
  61. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658PubMedCrossRefGoogle Scholar
  62. Xu J, Liao X, Wong C (2010) Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer 126:1029–1035PubMedGoogle Scholar
  63. Xu J, Liao X, Lu N, Liu W, Wong CW (2011) Chromatin-modifying drugs induce miRNA-153 expression to suppress Irs-2 in glioblastoma cell lines. Int J Cancer 129:2527–2531PubMedCrossRefGoogle Scholar
  64. Zhong M, Ma X, Sun C, Chen L (2010) MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem Biol Interact 184:431–438PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Berrin Tunca
    • 1
  • Gulcin Tezcan
    • 1
  • Gulsah Cecener
    • 1
  • Unal Egeli
    • 1
  • Secil Ak
    • 1
  • Hulusi Malyer
    • 2
  • Gulendam Tumen
    • 3
  • Ayhan Bilir
    • 4
  1. 1.Department of Medical Biology, Medical FacultyUludag UniversityBursaTurkey
  2. 2.Department of Biology, Science FacultyUludag UniversityBursaTurkey
  3. 3.Department of Biology, Science FacultyBalıkesir UniversityBalıkesirTurkey
  4. 4.Department of Histology and Embryology, Medical FacultyIstanbul UniversityIstanbulTurkey

Personalised recommendations