Changes in the expression of plasma proteins associated with thrombosis in BRCA1 mutation carriers

  • Ana Custodio
  • Antonio J. López-Farré
  • José J. Zamorano-León
  • Petra J. Mateos-Cáceres
  • Carlos Macaya
  • Trinidad Caldés
  • Miguel de la Hoya
  • Elena Olivera
  • Javier Puente
  • Eduardo Díaz-Rubio
  • Pedro Pérez-SeguraEmail author
Original Paper



Although BRCA1 gene mutations have been associated with breast cancer, BRCA1 mutations have been also involved in other functions. Thrombosis and coagulation are novel mechanisms recently associated with cancer. The aims of the present study were (a) to evaluate, using proteomics, if BRCA1 mutation carriers have a different plasma proteins expression related to thrombosis and coagulation profile than non-mutant BRCA1 women and (b) to analyze if the expression of these proteins may be different among BRCA1 mutation carriers with and without breast cancer.


Proteomic study was based on 2-dimensional electrophoresis and mass spectrometry. The study was performed in 10 BRCA1 non-mutant controls and 21 women with BRCA1 mutations (with breast cancer (n = 8) and breast cancer-free (n = 13)), all of them free of family history or diagnosis of ovarian cancer.


Proteomic study showed that fibrinogen gamma chain isotypes 2 and 3, serotransferrin isotype 4, and convertase C3/C5 isotypes 1–5 were significantly increased in plasma from BRCA1 mutation carriers with respect to BRCA1 non-mutant controls. Plasma levels of alpha-1 antitrypsin isotypes 2–5, apolipoprotein A-IV, and vitamin D-binding protein isotypes 1 and 2 were significantly reduced in BRCA1 mutation carriers with respect to non-mutant controls. Only apolipoprotein A-IV plasma levels were significantly higher in cancer-free BRCA1 mutations carriers compared with BRCA1 mutations carriers who developed breast cancer.


It is suggested that independently of breast cancer generation, BRCA1-encoded gene alterations are associated with changes in the expression of circulating proteins associated with thrombosis and coagulation.


Breast cancer BRCA1 gene Proteomics Thrombosis 



This work has been supported by a grant from Oncology Spanish Society, Fondos de Investigaciones de la Seguridad Social (Redes Temáticas de Cooperación Red Heracles RD06/0009010 and Redes Temáticas Investigación y Cooperación en Cancer RD06/0020/0021). Petra J. Mateos-Cáceres is staff of Fundación para la Investigación Biomédica del Hospital Clínico San Carlos. José J Zamorano-León is staff of Red Heracles (Redes Temáticas de Cooperación Red Heracles RD06/0009/010). We thank Begoña Larrea for secretarial assistance.

Conflict of interest

All authors declare no conflicts of interest with respect to the manuscript entitled “Changes in the expression of plasma proteins associated with thrombosis in BRCA1 mutation carriers.”


  1. Alonso-Orgaz S, Moreno L, Macaya C, Rico L, Mateos-Cáceres PJ, Sacristán D, Pérez-Vizcaíno F, Segura A, Tamargo J, López-Farré A (2006) Proteomic study of plasma from moderate hypercholesterolemic patients. J Proteome Res 5:2301–2308. doi: 10.1021/pr060159w PubMedCrossRefGoogle Scholar
  2. Berstein LM, Koskela A, Boyarkina MP, Adlercreutz H (2010) Excretion of estrogens, catecholestrogens and phytoestrogens in carriers of BRCA1 gene mutations: effects of metformin. Neoplasma 57:333–338. doi: 10.4149/neo_2010_04_333 PubMedCrossRefGoogle Scholar
  3. Bick RL (2003) Cancer-associated thrombosis. N Engl J Med 349:109–111PubMedCrossRefGoogle Scholar
  4. Bombeli T, Schwartz BR, Harlan JM (1998) Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 187:329–339. doi: 10.1084/jem.187.3.329 PubMedCrossRefGoogle Scholar
  5. Bourdeanu L, Luu T (2010) Arterial thrombosis associated with adjuvant chemotherapy for breast cancer: a case report. J Am Acad Nurse Pract 22:140–143. doi: 10.1111/j.1745-7599.2009.00486.x PubMedCrossRefGoogle Scholar
  6. Brody LC, Biesecker BB (1998) Breast cancer susceptibility genes. BRCA1 and BRCA2. Medicine (Baltimore) 77:208–226CrossRefGoogle Scholar
  7. Bucurenci N, Blake DR, Chidwick K, Winyard PG (1992) Inhibition of neutrophil superoxide production by human plasma a1-antitrypsin. FEBS Lett 300:321. doi: 10.1016/0014-5793(92)80156-B CrossRefGoogle Scholar
  8. Buller HR, van Doormaal FF, van Sluis GL, Kamphuisen PW (2007) Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 1(Suppl):246–254. doi: 10.1111/j.1538-7836.2007.02497.x CrossRefGoogle Scholar
  9. Chen S, Parmigiani G (2007) Meta-analyisis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25:1329–1333. doi: 10.1200/JCO.2006.09.1066 PubMedCrossRefGoogle Scholar
  10. de la Hoya M, Pérez-Segura P, Van Orsouw N, Díaz-Rubio E, Caldés T (2001) Spanish family study on hereditary breast and/or ovarian cancer: analysis of the BRCA1 gene. Int J Cancer 91:137–140. doi: 10.1002/10970215(20010101)91:1<137:AID-IJC1020>3.0.CO;2-R PubMedCrossRefGoogle Scholar
  11. de la Hoya M, Osorio A, Godino J, Sulleiro S, Tosar A, Perez-Segura P, Fernandez C, Rodríguez R, Díaz-Rubio E, Benítez J, Devilee P, Caldés T (2002) Association between BRCA1 and BRCA2 mutations and cancer phenotype in Spanish breast/ovarian cancer families: implications for genetic testing. Int J Cancer 97:466–471. doi: 10.1002/ijc.1627 PubMedCrossRefGoogle Scholar
  12. Defeo K, Hayes C, Chernick M, Van Ryn J, Gilmour SK (2010) Use of dabigatran etexilate to reduce breast cancer progression. Cancer Biol Ther. doi: 10.4161/cbt.10.10.13236
  13. Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34:1416–1426. doi: 10.1093/nar/gkl010 PubMedCrossRefGoogle Scholar
  14. Dieplinger H, Ankerst DP, Burges A, Lenhard M, Lingenhel A, Fineder L, Buchner H, Stieber P (2009) Afamin and apolipoprotein A-IV: novel protein markers for ovarian cancer. Cancer Epidemiol Biomarkers Prev 18:1127–1133. doi: 10.1158/1055-9965.EPI-08-0653 PubMedCrossRefGoogle Scholar
  15. Ford D, Easton DF, Peto J (1995) Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am J Hum Genet 57:1457PubMedGoogle Scholar
  16. Gailani D, Renné T (2007) Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol 27:2507–2513PubMedCrossRefGoogle Scholar
  17. Gast MC, Schellens JH, Beijnen JH (2009) Clinical proteomics in breast cancer: a review. Breast Cancer Res Treat 116:17–29. doi: 10.1007/s10549-008-0263-3 PubMedCrossRefGoogle Scholar
  18. Guo Q, Zhang B, Dong X, Wu Y (2009) Elevated levels of plasma fibrinogen in patients with pancreatic cancer: possible role of a distant metastasis predictor. Pancreas 38:75–79. doi: 10.1097/MPA.0b013e3181987d86 CrossRefGoogle Scholar
  19. Haddad TC, Greeno EW (2006) Chemotherapy-induced thrombosis. Thromb Res 118:555–568PubMedCrossRefGoogle Scholar
  20. Haiman M, Salvenmoser W, Scheiber K, Lingenhel A, Rudolph C, Schmitz G, Kronenberg F, Dieplinger H (2005) Immunohistochemical localization of apolipoprotein A-IV in human kidney tissue. Kidney Int 68:1130–1136. doi: 10.1111/j.1523-1755.2005.00519.x PubMedCrossRefGoogle Scholar
  21. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689PubMedCrossRefGoogle Scholar
  22. Hlavaty JJ, Partin AW, Shue MJ, Mangold LA, Derby J, Javier T, Kelley S, Stieg A, Briggman JV, Hass GM, Wu YJ (2003) Identification and preliminary clinical evaluation of a 50.8-kDa serum marker for prostate cancer. Urology 61:1261–1265. doi: 10.1016/S0090-4295(03)00036-0 PubMedCrossRefGoogle Scholar
  23. Jones JM, McGonigle NC, McAnespie M, Cran GW, Graham AN (2006) Plasma fibrinogen and serum C-reactive protein are associated with non-small cell lung cancer. Lung Cancer 53:97–101. doi: 10.1016/j.lungcan.2006.03.012 PubMedCrossRefGoogle Scholar
  24. Kennedy RD, Quinn JE, Johnston PG, Harkin DP (2002) BRCA1: mechanisms of inactivation and implications for management of patients. Lancet 360:1007–1014. doi: 10.1016/S0140-6736(02)11087-7 PubMedCrossRefGoogle Scholar
  25. Kinoshita T (1991) Biology of complement: the overture. Immunol Today 12:291–295PubMedCrossRefGoogle Scholar
  26. Koomen JM, Shih LN, Coombes KR, Li D, Xiao LC, Fidler IJ, Abbruzzese JL, Kobayashi R (2005) Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clin Cancer Res 11:1110–1118PubMedGoogle Scholar
  27. Kumar K, Thangaraju M, Sachdanandam P (1991) Changes observed in antioxidant system in the blood of postmenopausal women with breast cancer. Biochem Int 25:371–380PubMedGoogle Scholar
  28. Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48:1296–1304PubMedGoogle Scholar
  29. Li J, Orlandi R, White CN, Rosenzweig J, Zhao J, Seregni E, Morelli D, Yu Y, Meng XY, Zhang Z, Davidson NE, Fung ET, Chan DW (2005) Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin Chem 51:2229–2235PubMedCrossRefGoogle Scholar
  30. López-Farré A, Zamorano-León JJ (2010) The contribution of proteomics to cancer diagnosis. Cancer Chemother 5:167–176Google Scholar
  31. López-Farré AJ, Mateos-Cáceres PJ, Sacristán D, Azcona L, Bernardo E, de Prada TP, Alonso-Orgaz S, Fernández-Arquero M, Fernández-Ortiz A, Macaya C (2007) Relationship between vitamin D binding protein and aspirin resistance in coronary ischemic patients: a proteomic study. J Proteome Res 6:2481–2487. doi: 10.1021/pr060600i PubMedCrossRefGoogle Scholar
  32. Mannucci PM (1995). Recent progress in the pathophysiology of fibrinogen. Eur Heart J 16(Suppl A):25–30. doi: 10.1093/eurheartj/16.suppl_A.25 PubMedGoogle Scholar
  33. Mateos-Cáceres PJ, García-Méndez A, López Farré A, Macaya C, Núñez A, Gómez J, Alonso-Orgaz S, Carrasco C, Burgos ME, de Andrés R, Granizo JJ, Farré J, Rico LA (2004) Proteomic analysis of plasma from patients during an acute coronary syndrome. J Am Coll Cardiol 44:1578–1583. doi: 10.1016/j.jacc.2004.06.073 PubMedCrossRefGoogle Scholar
  34. Mateos-Cáceres PJ, Macaya C, Azcona L, Modrego J, Mahillo E, Bernardo E, Fernandez-Ortiz A, López-Farré AJ (2010) Different expression of proteins in platelets from aspirin-resistant and aspirin-sensitive patients. Thromb Haemost 103:160–170. doi: 10.1160/TH09-05-0290 PubMedCrossRefGoogle Scholar
  35. McEachron TA, Pawlinski R, Richards KL, Church FC, Mackman N (2010) Protease-activated receptors mediate cross-talk between coagulation and fibrinolysis. Blood 116:5037–5044. doi: 10.1182/blood-2010-06-293126 PubMedCrossRefGoogle Scholar
  36. Mego M, De Giorgi U, Broglio K, Dawood S, Valero V, Andreopoulou E, Handy B, Reuben JM, Cristofanilli M (2009) Circulating tumour cells are associated with increased risk of venous thromboembolism in metastatic breast cancer patients. Br J Cancer 101:1813–1816. doi: 10.1038/sj.bjc.6605413 PubMedCrossRefGoogle Scholar
  37. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran CL, Bennett M, Ding W, Bell R, Rosenthal J, Hussey C, Tran T, McClure M, Frye C, Hattier T, Phelps R, Haugen-Strano A, Katcher H, Yakumo K, Gholami Z, Shaffer D, Stone S, Bayer S, Wray C, Bogden R, Dayananth P, Ward J, Tonin P, Narod S, Bristow PK, Norris FH, Helvering L, Morrison P, Rosteck P, Lai M, Barrett JC, Lewis C, Neuhausen S, Cannon-Albright L, Goldgar D, Wiseman R, Kamb A, Skolnick MH (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRefGoogle Scholar
  38. Miller VM, Jayachandran M, Heit JA, Owen WG (2006) Estrogen therapy and thrombotic risk. Pharmacol Ther 111:792–807PubMedCrossRefGoogle Scholar
  39. Modrego J, Maroto L, Tamargo J, Azcona L, Mateos-Cáceres P, Segura A, Moreno-Herrero R, Pérez-Castellanos N, Delpón E, Pérez-Villacastín J, Rodríguez E, Macaya C, López-Farré AJ (2010) Comparative expression of proteins in left and right atrial appendages from patients with mitral valve disease at sinus rhythm and atrial fibrillation. J Cardiovasc Electrophysiol 21:859–868. doi: 10.1111/j.1540-8167.2010.01718.x PubMedGoogle Scholar
  40. Nagulu M, Uday KV, Nalini K, Dharak R, Narsimha RY, Rama KD (2009) Oxidative stress and anti-oxidant status in breast cancer patients. J Pharm Res 2:62–65Google Scholar
  41. Nand S (1993) Homeostasis and cancer. Cancer J 6:54–58Google Scholar
  42. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339:1609–1618PubMedCrossRefGoogle Scholar
  43. Ostos MA, Conconi M, Vergnes L, Baroukh N, Ribalta J, Girona J, Caillaud JM, Ochoa A, Zakin MM (2001) Antioxidative and antiatherosclerotic effects of human apolipoprotein A-IV in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Bio 21:1023–1028. doi: 10.1161/01.ATV.21.6.1023 CrossRefGoogle Scholar
  44. Polterauer S, Grimm C, Seebacher V, Concin N, Marth C, Tomovski C, Husslein H, Leipold H, Hefler-Frischmuth K, Tempfer C, Reinthaller A, Hefler L (2009) Plasma fibrinogen levels and prognosis in patients with ovarian cancer: a multicenter study. Oncologist 14:979–985. doi: 10.1634/theoncologist.2009-0079 PubMedCrossRefGoogle Scholar
  45. Punnonen K, Ahotupa M, Asaishi K, Hyöty M, Kudo R, Punnonen R (1994) Antioxidant enzyme activities and oxidative stress in human breast cancer. J Cancer Res Clin Onco 120:374–377. doi: 10.1007/BF01247464 CrossRefGoogle Scholar
  46. Qin X, Swertfeger DK, Zheng S, Hui DY, Tso P (1998) Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation. Am J Physiol 274:H1836–H1840PubMedGoogle Scholar
  47. Rickles FR, Edwards RL (1983) Activation of blood coagulation in cancer: Trousseau’s syndrome revisited. Blood 62:14–31PubMedGoogle Scholar
  48. Rosenberg RD, Aird WC (1999) Vascular-bed-specific hemostasis and hypercoagulable states. N Engl J Med 340:1555–1564PubMedCrossRefGoogle Scholar
  49. Sahni A, Simpson-Haidaris PJ, Sahni SK, Vaday GG, Francis CW (2008) Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor2 (FGF-2). J Thromb Haemost 6:174–175. doi: 10.1111/j.1538-7836.2007.02808.x Google Scholar
  50. Saphner T, Tormey DC, Gray R (1991) Venous and arterial thrombosis in patients who received adjuvant therapy for breast cancer. J Clin Oncol 9:286–294PubMedGoogle Scholar
  51. Talmud PJ, Martin S, Steiner G, Flavell DM, Whitehouse DB, Nagl S, Jackson R, Taskinen MR, Frick MH, Nieminen MS, Kesäniemi YA, Pasternack A, Humphries SE, Syvänne M (2003) Diabetes Atherosclerosis Intervention Study Investigators. Progression of atherosclerosis is associated with variation in the alpha1-antitrypsin gene. Arterioscler Thromb Vasc Biol 23:644–649. doi: 10.1161/01.ATV.0000065196.61663.8D PubMedCrossRefGoogle Scholar
  52. Tesselaar ME, Ouwerkerk J, Nooy MA, Rosendaal FR, Osanto S (2004) Risk factors for catheter-related thrombosis in cancer patients. Eur J Cancer 40:2253–2259. doi: 10.1016/j.ejca.2004.06.023 PubMedCrossRefGoogle Scholar
  53. Tonin P, Weber B, Offit K, Couch F, Rebbeck TR, Neuhausen S, Godwin AK, Daly M, Wagner-Costalos J, Berman D, Grana G, Fox E, Kane MF, Kolodner RD, Krainer M, Haber DA, Struewing JP, Warner E, Rosen B, Lerman C, Peshkin B, Norton L, Serova O, Foulkes WD, Lynch HT, Lenoir GM, Narod SA, Garber JE (1996) Frequency of recurrent BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer families. Nat Med 2:1179–1183PubMedCrossRefGoogle Scholar
  54. Trenz K, Lugowski S, Jahrsdörfer U, Jainta S, Vogel W, Speit G (2003) Enhanced sensitivity of peripheral blood lymphocytes from women carrying a BRCA1 mutation towards the mutagenic effects of various cytostatics. Mutat Res 544:279–288. doi: 10.1016/j.mrrev.2003.06.011 PubMedCrossRefGoogle Scholar
  55. Vasconcellos CA, Lind SE (1993) Coordinated inhibition of actin-induced platelet aggregation by plasma gelsolin and vitamin D-binding protein. Blood 82:3648–3657PubMedGoogle Scholar
  56. Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB, Fleisher M, Lilja H, Brogi E, Boyd J, Sanchez-Carbayo M, Holland EC, Cordon-Cardo C, Scher HI, Tempst P (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116:271–284. doi: 10.1172/JCI26022 PubMedCrossRefGoogle Scholar
  57. Zamorano-León JJ, Modrego J, Mateos-Cáceres PJ, Macaya C, Martín-Fernández B, Miana M, de las Heras N, Cachofeiro V, Lahera V, López-Farré AJ (2010) A proteomic approach to determine changes in proteins involved in the myocardial metabolism in left ventricles of spontaneously hypertensive rats. Cell Physiol Biochem 25:347–358PubMedCrossRefGoogle Scholar
  58. Zielinski CC, Budinsky AC, Wagner TM, Wolfram RM, Köstler WJ, Kubista M, Brodowicz T, Kubista E, Wiltschke C (2003) Defect of tumour necrosis factor-alpha (TNF-alpha) production and TNF-alpha-induced ICAM-1-expression in BRCA1 mutations carriers. Breast Cancer Res Treat 81:99–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ana Custodio
    • 1
  • Antonio J. López-Farré
    • 2
  • José J. Zamorano-León
    • 2
  • Petra J. Mateos-Cáceres
    • 2
  • Carlos Macaya
    • 2
  • Trinidad Caldés
    • 1
  • Miguel de la Hoya
    • 1
  • Elena Olivera
    • 1
  • Javier Puente
    • 1
  • Eduardo Díaz-Rubio
    • 1
  • Pedro Pérez-Segura
    • 1
    Email author
  1. 1.Medical Oncology DepartmentHospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
  2. 2.Cardiovascular Research Unit of Cardiology DepartmentHospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain

Personalised recommendations