Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties

  • Linlin Zhang
  • Min Jiao
  • Lei Li
  • Dapeng Wu
  • Kaijie Wu
  • Xiang Li
  • Guodong Zhu
  • Qiang Dang
  • Xinyang Wang
  • Jer-Tsong Hsieh
  • Dalin He
Original Paper

Abstract

Purpose

Prostate cancer (PCa) becomes lethal when cancer cells develop into castration-resistant PCa, which remains incurable because of the poor understanding of their cell origin and characteristics. We aim to investigate the potential role of cancer stem cells (CSCs) in PCa progression.

Methods

Human PCa cell lines (LNCaP, 22RV1, DU145 and PC-3) were plated in serum-free suspension culture system allowed for tumorsphere forming. To evaluate the CSC characteristics of tumorspheres, the self-renewal, chemoresistance, tumorigenicity of the PCa tumorsphere cells, and the expression levels of stemness-related proteins in the PCa tumorsphere cells were assessed, comparing with the parental adherent cells.

Results

Tumorsphere cells from PCa cell lines displayed enhanced self-renewal, chemoresistance and tumor-initiating capacity when compared with the adherent cells. Additionally, these cells overexpressed CSC marker CD44. Also, the tumorsphere cells expressed high levels of “stemness” genes Gli1, ABCG2 and Bmi-1.

Conclusions

Collectively, these data demonstrated that tumorspheres derived from PCa cells possess chemoresistant and CSC properties. Our study suggests that the identification of PCa CSCs could provide new insight into the lethal phenotype of PCa and therapeutic implications.

Keywords

Prostate cancer Cancer stem cell Chemoresistance Tumorsphere Stemness 

Notes

Acknowledgments

This study was supported by a grant from National Natural Science Foundation of China (No. 30801152 to LL Zhang).

Conflict of interest

We declare that we have no conflict of interest.

References

  1. Ao A, Morrison BJ, Wang H, Lopez JA, Reynolds BA, Lu J (2011) Response of estrogen receptor-positive breast cancer tumorspheres to antiestrogen treatments. PLoS One 6(4):e18810. doi:10.1371/journal.pone.0018810 PubMedCrossRefGoogle Scholar
  2. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12(19):5615–5621. doi:10.1158/1078-0432.CCR-06-0169 PubMedCrossRefGoogle Scholar
  3. Bapat SA, Mali AM, Koppikar CB, Kurrey NK (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65(8):3025–3029. doi:10.1158/0008-5472.CAN-04-3931 PubMedGoogle Scholar
  4. Bisson I, Prowse DM (2009) WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 19(6):683–697. doi:10.1038/cr.2009.43 PubMedCrossRefGoogle Scholar
  5. Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, van Tellingen O, van Lohuizen M (2007) Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12(4):328–341. doi:10.1016/j.ccr.2007.08.032 PubMedCrossRefGoogle Scholar
  6. Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW (2011a) BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 112(10):2729–2741. doi:10.1002/jcb.23234 PubMedCrossRefGoogle Scholar
  7. Cao L, Zhou Y, Zhai B, Liao J, Xu W, Zhang R, Li J, Zhang Y, Chen L, Qian H, Wu M, Yin Z (2011b) Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol 11:71. doi:10.1186/1471-230X-11-71 PubMedCrossRefGoogle Scholar
  8. Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86(17–18):631–637. doi:10.1016/j.lfs.2010.02.012 PubMedCrossRefGoogle Scholar
  9. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337. doi:10.1158/0008-5472.CAN-05-1343 PubMedCrossRefGoogle Scholar
  10. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34–45. doi:10.1038/35094009 PubMedCrossRefGoogle Scholar
  11. Fujii H, Honoki K, Tsujiuchi T, Kido A, Yoshitani K, Takakura Y (2009) Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. Int J Oncol 34(5):1381–1386PubMedGoogle Scholar
  12. Ghods AJ, Irvin D, Liu G, Yuan X, Abdulkadir IR, Tunici P, Konda B, Wachsmann-Hogiu S, Black KL, Yu JS (2007) Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 25(7):1645–1653. doi:10.1634/stemcells.2006-0624 PubMedCrossRefGoogle Scholar
  13. Gilbert CA, Ross AH (2009) Cancer stem cells: cell culture, markers, and targets for new therapies. J Cell Biochem 108(5):1031–1038. doi:10.1002/jcb.22350 PubMedCrossRefGoogle Scholar
  14. Gulino A, Ferretti E, De Smaele E (2009) Hedgehog signalling in colon cancer and stem cells. EMBO Mol Med 1(6–7):300–302. doi:10.1002/emmm.200900042 PubMedCrossRefGoogle Scholar
  15. Hong SP, Wen J, Bang S, Park S, Song SY (2009) CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer 125(10):2323–2331. doi:10.1002/ijc.24573 PubMedCrossRefGoogle Scholar
  16. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics 2010. CA Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073 PubMedCrossRefGoogle Scholar
  17. Kelly K, Yin JJ (2008) Prostate cancer and metastasis initiating stem cells. Cell Res 18(5):528–537. doi:10.1038/cr.2008.50 PubMedCrossRefGoogle Scholar
  18. Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp JG, Cowan K (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8(1):22–28PubMedGoogle Scholar
  19. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101(3):781–786. doi:10.1073/pnas.0307618100 PubMedCrossRefGoogle Scholar
  20. Lang SH, Frame FM, Collins AT (2009) Prostate cancer stem cells. J Pathol 217(2):299–306. doi:10.1002/path.2478 PubMedCrossRefGoogle Scholar
  21. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037. doi:10.1158/0008-5472.CAN-06-2030 PubMedCrossRefGoogle Scholar
  22. Li H, Jiang M, Honorio S, Patrawala L, Jeter CR, Calhoun-Davis T, Hayward SW, Tang DG (2009) Methodologies in assaying prostate cancer stem cells. Methods Mol Biol 568:85–138. doi:10.1007/978-1-59745-280-9_7 PubMedCrossRefGoogle Scholar
  23. Liu T, Xu F, Du X, Lai D, Zhao Y, Huang Q, Jiang L, Huang W, Cheng W, Liu Z (2010) Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1. Mol Cell Biochem 340(1–2):265–273. doi:10.1007/s11010-010-0426-5 PubMedCrossRefGoogle Scholar
  24. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215. doi:10.1038/nm.2284 PubMedCrossRefGoogle Scholar
  25. Maitland NJ, Collins AT (2008) Prostate cancer stem cells: a new target for therapy. J Clin Oncol 26(17):2862–2870. doi:10.1200/JCO.2007.15.1472 PubMedCrossRefGoogle Scholar
  26. Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW, Zoeller M (2008) CD44 and EpCAM: cancer-initiating cell markers. Curr Mol Med 8(8):784–804PubMedCrossRefGoogle Scholar
  27. Marshall GP 2nd, Reynolds BA, Laywell ED (2007) Using the neurosphere assay to quantify neural stem cells in vivo. Curr Pharm Biotechnol 8(3):141–145PubMedCrossRefGoogle Scholar
  28. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110. doi:10.1038/nature05372 PubMedCrossRefGoogle Scholar
  29. Olsson E, Honeth G, Bendahl PO, Saal LH, Gruvberger-Saal S, Ringner M, Vallon-Christersson J, Jonsson G, Holm K, Lovgren K, Ferno M, Grabau D, Borg A, Hegardt C (2011) CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer 11(1):418. doi:10.1186/1471-2407-11-418 PubMedCrossRefGoogle Scholar
  30. Orian-Rousseau V (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46(7):1271–1277. doi:10.1016/j.ejca.2010.02.024 PubMedCrossRefGoogle Scholar
  31. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708. doi:10.1038/sj.onc.1209327 PubMedCrossRefGoogle Scholar
  32. Pfeiffer MJ, Schalken JA (2010) Stem cell characteristics in prostate cancer cell lines. Eur Urol 57(2):246–254. doi:10.1016/j.eururo.2009.01.015 PubMedCrossRefGoogle Scholar
  33. Pienta KJ, Bradley D (2006) Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 12(6):1665–1671. doi:10.1158/1078-0432.CCR-06-0067 PubMedCrossRefGoogle Scholar
  34. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511. doi:10.1158/0008-5472.CAN-05-0626 PubMedCrossRefGoogle Scholar
  35. Rappa G, Mercapide J, Anzanello F, Prasmickaite L, Xi Y, Ju J, Fodstad O, Lorico A (2008) Growth of cancer cell lines under stem cell-like conditions has the potential to unveil therapeutic targets. Exp Cell Res 314(10):2110–2122. doi:10.1016/j.yexcr.2008.03.008 PubMedCrossRefGoogle Scholar
  36. Rich JN, Bao S (2007) Chemotherapy and cancer stem cells. Cell Stem Cell 1(4):353–355. doi:10.1016/j.stem.2007.09.011 PubMedCrossRefGoogle Scholar
  37. Ruiz i Altaba A, Mas C, Stecca B (2007) The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17(9):438–447. doi:10.1016/j.tcb.2007.06.007 PubMedCrossRefGoogle Scholar
  38. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9(1):105–127. doi:10.2217/14622416.9.1.105 PubMedCrossRefGoogle Scholar
  39. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  40. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. doi:10.1038/nature03128 PubMedCrossRefGoogle Scholar
  41. Song Z, Yue W, Wei B, Wang N, Li T, Guan L, Shi S, Zeng Q, Pei X, Chen L (2011) Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS One 6(3):e17687. doi:10.1371/journal.pone.0017687 PubMedCrossRefGoogle Scholar
  42. Su YJ, Lai HM, Chang YW, Chen GY, Lee JL (2011) Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 30(15):3186–3199. doi:10.1038/emboj.2011.211emboj2011211 PubMedCrossRefGoogle Scholar
  43. Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106. doi:10.1038/nrclinonc.2010.196 PubMedCrossRefGoogle Scholar
  44. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi:10.1038/nrc2499 PubMedCrossRefGoogle Scholar
  45. Wang X, Venugopal C, Manoranjan B, McFarlane N, O’Farrell E, Nolte S, Gunnarsson T, Hollenberg R, Kwiecien J, Northcott P, Taylor MD, Hawkins C, Singh SK (2011) Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene. doi:10.1038/onc.2011.232onc2011232 Google Scholar
  46. Wicha MS (2006) Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res 12(19):5606–5607. doi:10.1158/1078-0432.CCR-06-1537 PubMedCrossRefGoogle Scholar
  47. Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LM, Hung SC, Kao SY, Chang CJ, Chiou SH (2011) Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. J Oncol 2011, art no 609259. doi:10.1155/2011/609259
  48. Zen Y, Fujii T, Yoshikawa S, Takamura H, Tani T, Ohta T, Nakanuma Y (2007) Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. Am J Pathol 170(5):1750–1762. doi:10.2353/ajpath.2007.060798 PubMedCrossRefGoogle Scholar
  49. Zhang Y, Li B, Ji ZZ, Zheng PS (2010) Notch1 regulates the growth of human colon cancers. Cancer 116(22):5207–5218. doi:10.1002/cncr.25449 PubMedCrossRefGoogle Scholar
  50. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA, Reya T (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458(7239):776–779. doi:10.1038/nature07737 PubMedCrossRefGoogle Scholar
  51. Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67(8):3691–3697. doi:10.1158/0008-5472.CAN-06-3912 PubMedCrossRefGoogle Scholar
  52. Zhong Y, Guan K, Guo S, Zhou C, Wang D, Ma W, Zhang Y, Li C, Zhang S (2010) Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Lett 299(2):150–160. doi:10.1016/j.canlet.2010.08.013 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Linlin Zhang
    • 1
    • 3
  • Min Jiao
    • 2
  • Lei Li
    • 1
    • 3
  • Dapeng Wu
    • 1
  • Kaijie Wu
    • 1
    • 3
  • Xiang Li
    • 1
  • Guodong Zhu
    • 1
  • Qiang Dang
    • 1
  • Xinyang Wang
    • 1
  • Jer-Tsong Hsieh
    • 4
  • Dalin He
    • 1
    • 3
  1. 1.Department of UrologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  2. 2.Department of OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  3. 3.Oncological Research Lab, Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of People’s Republic of ChinaXi’anChina
  4. 4.Department of UrologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations