Advertisement

RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients

  • Jörg-Christian Heinrich
  • Anne Tuukkanen
  • Michael Schroeder
  • Torsten Fahrig
  • Rudolf Fahrig
Original Paper

Abstract

Background

Several reports describe the importance of the chaperone HSP27 (HSPB1) in cancer progression, and the demand for drugs that modulate HSPB1-activity is increasing rapidly. We reported earlier that RP101 (Bromovinyldeoxyuridine, BVDU, Brivudine) improves the efficacy of chemotherapy in pancreatic cancer.

Methods

Chemistry: Binding of RP101 and HSPB1 was discovered by affinity chromatography. Molecular and cell biology: HSPB1 in vitro transcription/translation (TNT), Pull down using RP101-coupled magnetic beads, Immuno Co-precipitations, Structural modeling of HSP27 (HSPB1), Introduction of point mutations into linear expression templates by PCR, Heat shock, Tumor Invasion. Animal experiments: Treatment of AH13r Sarcomas in SD-rats. Clinical Studies with late-stage pancreatic cancer patients: Pilot study, Dose finding study, Phase II study (NCT00550004).

Results

Here, we report that RP101 binds in vitro to the heat shock protein HSPB1 and inhibits interaction with its binding partners. As a result, more activated CASP9 was detected in RP101-treated cancer cells. We modeled HSPB1-structure and identified the RP101 binding site. When we tested RP101 as an anti-cancer drug in a rat model, we found that it improved chemotherapy. In clinical studies with late-stage pancreatic cancer patients, the dose of 500 mg/day was safe and efficient, but 760 mg/day turned out to be too high for lightweight patients.

Conclusions

The development of RP101 as a cancer drug represents a truly novel approach for prevention of chemoresistance and enhancement of chemosensitivity.

Keywords

HSP27 (HSPB1) Chemotherapy Chemoresistance Molecular chaperones Pancreatic cancer 

Notes

Acknowledgments

We thank C. Tuthill for the permission to publish the data of the SciClone phase 2 study, Th. Keller for the statistical analysis of BSA dependence, and C. Laverty for reviewing the manuscript.

Conflict of interest

We declare that we have no conflict of interest.

References

  1. Alexakis N, Halloran C, Raraty M, Ghaneh P, Sutton R, Neoptolemos JP (2004) Current standards of surgery for pancreatic cancer. Br J Surg 91(11):1410–1427PubMedCrossRefGoogle Scholar
  2. Arrigo AP, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, Guillet D, Moulin M, Diaz-Latoud C, Vicart P (2007) Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett 581(19):3665–3674PubMedCrossRefGoogle Scholar
  3. Batchelder AJ, Gordon-Weeks AN, Walker RA (2009) Altered expression of anti-apoptotic proteins in non-involved tissue from cancer-containing breasts. Breast Cancer Res Treat 114(1):63–69PubMedCrossRefGoogle Scholar
  4. Bird LE, Ren J, Wright A, Leslie KD, Degreve B, Balzarini J, Stammers DK (2003) Crystal structure of varicella zoster virus thymidine kinase. J Biol Chem 278(27):24680–24687PubMedCrossRefGoogle Scholar
  5. Caillat C, Topalis D, Agrofoglio LA, Pochet S, Balzarini J, Deville-Bonne D, Meyer P (2008) Crystal structure of poxvirus thymidylate kinase: an unexpected dimerization has implications for antiviral therapy. Proc Natl Acad Sci USA 105(44):16900–16905PubMedCrossRefGoogle Scholar
  6. Champness JN, Bennett MS, Wien F, Visse R, Summers WC, Herdewijn P, de Clerq E, Ostrowski T, Jarvest RL, Sanderson MR (1998) Exploring the active site of herpes simplex virus type-1 thymidine kinase by X-ray crystallography of complexes with aciclovir and other ligands. Proteins 32(3):350–361PubMedCrossRefGoogle Scholar
  7. Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Catley L, Tai YT, Hayashi T, Shringarpure R, Burger R, Munshi N, Ohtake Y, Saxena S, Anderson KC (2003) Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102(9):3379–3386PubMedCrossRefGoogle Scholar
  8. Di Marco M, Di Cicilia R, Macchini M, Nobili E, Vecchiarelli S, Brandi G, Biasco G (2010) Metastatic pancreatic cancer: is gemcitabine still the best standard treatment? (review). Oncol Rep 23(5):1183–1192PubMedCrossRefGoogle Scholar
  9. Fahrig R (1996) Anti-recombinogenic and convertible co-mutagenic effects of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and other 5-substituted pyrimidine nucleoside analogs in S. cerevisiae MP1. Mutat Res 372(1):133–139PubMedGoogle Scholar
  10. Fahrig R, Steinkamp-Zucht A, Schaefer A (2000) Prevention of adriamycin-induced mdr1 gene amplification and expression in mouse leukemia cells by simultaneous treatment with the anti-recombinogen bromovinyldeoxyuridine. Anticancer Drug Des 15(5):307–312PubMedGoogle Scholar
  11. Fahrig R, Heinrich JC, Nickel B, Wilfert F, Leisser C, Krupitza G, Praha C, Sonntag D, Fiedler B, Scherthan H, Ernst H (2003) Inhibition of induced chemoresistance by cotreatment with (E)-5-(2-bromovinyl)-2′-deoxyuridine (RP101). Cancer Res 63(18):5745–5753PubMedGoogle Scholar
  12. Fahrig R, Quietzsch D, Heinrich JC, Heinemann V, Boeck S, Schmid RM, Praha C, Liebert A, Sonntag D, Krupitza G, Hanel M (2006) RP101 improves the efficacy of chemotherapy in pancreas carcinoma cell lines and pancreatic cancer patients. Anticancer Drugs 17(9):1045–1056PubMedCrossRefGoogle Scholar
  13. Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR, Fang CY, Lu HJ, Yang PY, Tang ZY (2005) Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 5(17):4581–4588PubMedCrossRefGoogle Scholar
  14. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5(22):2592–2601PubMedCrossRefGoogle Scholar
  15. Hansen RK, Parra I, Lemieux P, Oesterreich S, Hilsenbeck SG, Fuqua SA (1999) Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56(2):187–196PubMedCrossRefGoogle Scholar
  16. Harris AL, Hochhauser D (1992) Mechanisms of multidrug resistance in cancer treatment. Acta Oncol 31(2):205–213PubMedCrossRefGoogle Scholar
  17. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61–68PubMedCrossRefGoogle Scholar
  18. Hsieh M, Tsai HF, Chang WH (2005) HSP27 and cell death in spinocerebellar ataxia type 3. Cerebellum 4(1):31–36PubMedCrossRefGoogle Scholar
  19. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6:19PubMedCrossRefGoogle Scholar
  20. Jaattela M, Wissing D (1993) Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp Med 177(1):231–236PubMedCrossRefGoogle Scholar
  21. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66PubMedCrossRefGoogle Scholar
  22. Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M (2007) Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 6(1):299–308PubMedCrossRefGoogle Scholar
  23. Kanagasabai R, Karthikeyan K, Vedam K, Qien W, Zhu Q, Ilangovan G (2010) Hsp27 protects adenocarcinoma cells from UV-induced apoptosis by Akt and p21-dependent pathways of survival. Mol Cancer Res 8(10):1399–1412PubMedCrossRefGoogle Scholar
  24. Kang SH, Kang KW, Kim KH, Kwon B, Kim SK, Lee HY, Kong SY, Lee ES, Jang SG, Yoo BC (2008) Upregulated HSP27 in human breast cancer cells reduces herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 8:286PubMedCrossRefGoogle Scholar
  25. Karplus K (2009) SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res 37(Web Server issue):W492–W497Google Scholar
  26. Kase S, Parikh JG, Rao NA (2009) Expression of heat shock protein 27 and alpha-crystallins in human retinoblastoma after chemoreduction. Br J Ophthalmol 93(4):541–544PubMedCrossRefGoogle Scholar
  27. Lee JW, Kwak HJ, Lee JJ, Kim YN, Park MJ, Jung SE, Hong SI, Lee JH, Lee JS (2008) HSP27 regulates cell adhesion and invasion via modulation of focal adhesion kinase and MMP-2 expression. Eur J Cell Biol 87(6):377–387PubMedCrossRefGoogle Scholar
  28. Mahvi DM, Carper SW, Storm FK, Teal SR, Sondel PM (1993) Overexpression of 27-kDa heat-shock protein in MCF-7 breast cancer cells: effects on lymphocyte-mediated killing by natural killer and gamma delta T cells. Cancer Immunol Immunother 37(3):181–186PubMedCrossRefGoogle Scholar
  29. Mendez F, Sandigursky M, Franklin WA, Kenny MK, Kureekattil R, Bases R (2000) Heat-shock proteins associated with base excision repair enzymes in HeLa cells. Radiat Res 153(2):186–195PubMedCrossRefGoogle Scholar
  30. Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Mikuria K, Fujimoto M, Maehara S, Maehara Y, Okita K, Nakamura K, Sakaida I (2007) Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int J Oncol 31(6):1345–1350PubMedGoogle Scholar
  31. Murr MM, Sarr MG, Oishi AJ, van Heerden JA (1994) Pancreatic cancer. CA Cancer J Clin 44(5):304–318PubMedCrossRefGoogle Scholar
  32. Nadin SB, Vargas-Roig LM, Cuello-Carrion FD, Ciocca DR (2003) Deoxyribonucleic acid damage induced by doxorubicin in peripheral blood mononuclear cells: possible roles for the stress response and the deoxyribonucleic acid repair process. Cell Stress Chaperones 8(4):361–372PubMedCrossRefGoogle Scholar
  33. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A, Spooner D, Kerr DJ, Buchler MW (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350(12):1200–1210PubMedCrossRefGoogle Scholar
  34. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9(5):338–350PubMedCrossRefGoogle Scholar
  35. Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, Kharbanda S (2000) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19(16):1975–1981PubMedCrossRefGoogle Scholar
  36. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802PubMedCrossRefGoogle Scholar
  37. Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, Chen Q, McLeish KR, Klein JB (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278(30):27828–27835PubMedCrossRefGoogle Scholar
  38. Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, Gleave M (2005) Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 65(23):11083–11093PubMedCrossRefGoogle Scholar
  39. Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L, Nelson C, Gleave M (2006) Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98(5):1082–1089PubMedCrossRefGoogle Scholar
  40. Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81(1):15–27PubMedCrossRefGoogle Scholar
  41. Song H, Ethier SP, Dziubinski ML, Lin J (2004) Stat3 modulates heat shock 27 kDa protein expression in breast epithelial cells. Biochem Biophys Res Commun 314(1):143–150PubMedCrossRefGoogle Scholar
  42. Wang A, Liu X, Sheng S, Ye H, Peng T, Shi F, Crowe DL, Zhou X (2009) Dysregulation of heat shock protein 27 expression in oral tongue squamous cell carcinoma. BMC Cancer 9:167PubMedCrossRefGoogle Scholar
  43. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143PubMedCrossRefGoogle Scholar
  44. Wolff RA, Chiao P, Lenzi R, Pisters PW, Lee JE, Janjan NA, Crane CH, Evans DB, Abbruzzese JL (2000) Current approaches and future strategies for pancreatic carcinoma. Invest New Drugs 18(1):43–56PubMedCrossRefGoogle Scholar
  45. Xia Y, Liu Y, Wan J, Wang M, Rocchi P, Qu F, Iovanna JL, Peng L (2009) Novel triazole ribonucleoside down-regulates heat shock protein 27 and induces potent anticancer activity on drug-resistant pancreatic cancer. J Med Chem 52(19):6083–6096PubMedCrossRefGoogle Scholar
  46. Zhao L, Liu L, Wang S, Zhang YF, Yu L, Ding YQ (2007) Differential proteomic analysis of human colorectal carcinoma cell lines metastasis-associated proteins. J Cancer Res Clin Oncol 133(10):771–782PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jörg-Christian Heinrich
    • 1
  • Anne Tuukkanen
    • 2
  • Michael Schroeder
    • 2
  • Torsten Fahrig
    • 1
  • Rudolf Fahrig
    • 1
  1. 1.RESprotectDresdenGermany
  2. 2.Biotec/Department of ComputingTechnical University DresdenDresdenGermany

Personalised recommendations