Journal of Cancer Research and Clinical Oncology

, Volume 137, Issue 7, pp 1085–1093

18F-FDG PET or PET-CT to evaluate prognosis for head and neck cancer: a meta-analysis

  • Peng Xie
  • Minghuan Li
  • Hanxi Zhao
  • Xindong Sun
  • Zheng Fu
  • Jinming Yu
Original Paper

Abstract

Purpose

The purpose of this meta-analysis was to evaluate the prognostic value of standard uptake value (SUV) from serial Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in patients with head and neck cancer.

Methods

We searched for articles limited to head and neck cancer, dealt with the impact of SUV on survival and published in English. The endpoints were disease-free survival (DFS), overall survival (OS), and local control (LC). Two reviewers extracted data independently.

Results

Thirty-five studies were identified; of which, 26 studies involving 1,415 patients met the inclusion criteria. Pooled survival data suggested better DFS, OS, and LC in patients with low SUV of pre-treatment, and the odds ratio (OR) was 0.23, 0.24, and 0.27, respectively. Patients having tumors with low SUV of post-treatment also had significantly better DFS (OR = 0.17) and OS (OR = 0.28) than those with high SUV.

Conclusions

The present meta-analysis showed that 18F-FDG uptake, as measured by the SUV before treatment and metabolic response after treatment, are valuable for predicting long-term survival in head and neck cancer. High 18F-FDG uptake may be useful for identifying patients requiring more aggressive treatment.

Keywords

18F-FDG Head and neck cancer Standard uptake value Prognosis Meta-analysis 

References

  1. Allal AS, Dulguerov P, Allaoua M et al (2002) Standardized uptake value of 2-[18F] fluoro-2-deoxy-d-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 20(5):1398–1404PubMedCrossRefGoogle Scholar
  2. Allal AS, Slosman DO, Kebdani T et al (2004) Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-d-glucose. Int J Radiat Oncol Biol Phys 59(5):1295–1300PubMedCrossRefGoogle Scholar
  3. Bernier J, Domenge C, Ozsahin M et al (2004) Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 350(19):1945–1952PubMedCrossRefGoogle Scholar
  4. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6):567–578PubMedCrossRefGoogle Scholar
  5. Brun E, Kjellén E, Tennvall J et al (2002) FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 24(2):127–135PubMedCrossRefGoogle Scholar
  6. Byun BH, Na II, Cheon GJ et al (2008) Clinical significance of 18F-FDG uptake by primary sites in patients with diffuse large B cell lymphoma in the head and neck: a pilot study. Ann Nucl Med 22(8):645–651PubMedCrossRefGoogle Scholar
  7. Chan SC, Chang JT, Wang HM et al (2009) Prediction for distant failure in patients with stage M0 nasopharyngeal carcinoma: the role of standardized uptake value. Oral Oncol 45:52–58PubMedCrossRefGoogle Scholar
  8. Chung MK, Jeong HS, Park SG et al (2009) Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res 15(18):5861–5868PubMedCrossRefGoogle Scholar
  9. Cicone F, Loose D, Deron P et al (2008) Prognostic value of FDG uptake by the bone marrow in squamous cell carcinoma of the head and neck. Nucl Med Commun 29(5):431–435PubMedCrossRefGoogle Scholar
  10. Cohen EEW, Lingen MW, Vokes EE (2004) The expanding role of systemic therapy in head and neck cancer. J Clin Oncol 22:1743–1752PubMedCrossRefGoogle Scholar
  11. Cunningham D, Allum WH, Stenning SP et al (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 80:11–20CrossRefGoogle Scholar
  12. Döbert N, Kovács AF, Menzel C et al (2005) The prognostic value of FDG PET in head and neck cancer. Correlation with histopathology. Q J Nucl Med Mol Imaging 49(3):253–257PubMedGoogle Scholar
  13. Garden AS, Asper JA, Morrison WH et al (2004) Is concurrent chemoradiation the treatment of choice for all patients with Stage III or IV head and neck carcinoma? Cancer 100:1171–1178PubMedCrossRefGoogle Scholar
  14. Greven KM, Williams DW 3rd, Keyes JW Jr et al (1994) Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation. Cancer 74(4):1355–1359PubMedCrossRefGoogle Scholar
  15. Greven KM, Williams DW 3rd, McGuirt WF Sr et al (2001) Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck 23(11):942–946PubMedCrossRefGoogle Scholar
  16. Halfpenny W, Hain SF, Biassoni L et al (2002) FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer 86(4):512–516PubMedCrossRefGoogle Scholar
  17. Hoshikawa H, Mitani T, Nishiyama Y et al (2009) Evaluation of the therapeutic effects and recurrence for head and neck cancer after chemoradiotherapy by FDG-PET. Auris Nasus Larynx 36(2):192–198PubMedCrossRefGoogle Scholar
  18. Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25:571–578PubMedCrossRefGoogle Scholar
  19. Kao CH, Shiau YC, Shen YY et al (2002) Detection of recurrent or persistent nasopharyngeal carcinomas after radiotherapy with technetium-99 m methoxyisobutylisonitrile single photon emission computed tomography and computed tomography: comparison with 18-fluoro-2-deoxyglucose positron emission tomography. Cancer 94:1981–1986PubMedCrossRefGoogle Scholar
  20. Kim SY, Roh JL, Kim JS et al (2008) Utility of FDG PET in patients with squamous cell carcinomas of the oral cavity. Eur J Surg Oncol 34(2):208–215PubMedGoogle Scholar
  21. Krishna SM, James S, Balaram P (2006) Expression of VEGF as prognosticator in primary nasopharyngeal cancer and its relation to EBV status. Virus Res 115:85–90PubMedCrossRefGoogle Scholar
  22. Kunkel M, Reichert TE, Benz P et al (2003a) Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97(4):1015–1024PubMedCrossRefGoogle Scholar
  23. Kunkel M, Förster GJ, Reichert TE et al (2003b) Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 39(2):170–177PubMedCrossRefGoogle Scholar
  24. Kunkel M, Helisch A, Reichert TE et al (2006) Clinical and prognostic value of [(18)F]FDG-PET for surveillance of oral squamous cell carcinoma after surgical salvage therapy. Oral Oncol 42(3):297–305PubMedCrossRefGoogle Scholar
  25. La TH, Filion EJ, Turnbull BB et al (2009) Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys 74(5):1335–1341PubMedCrossRefGoogle Scholar
  26. Lee SW, Cho KJ, Park JH et al (2005) Expressions of Ku70 and DNA-PKcs as prognostic indicators of local control in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 62:1451–1457PubMedCrossRefGoogle Scholar
  27. Lee P, Weerasuriya DK, Lavori PW et al (2007) Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys 69:328–333PubMedCrossRefGoogle Scholar
  28. Lee SW, Nam SY, Im KC et al (2008) Prediction of prognosis using standardized uptake value of 2–18F- fluoro-2-deoxy-d-glucose positron emission tomography for nasopharyngeal carcinomas. Radiother Oncol 87:211–216PubMedCrossRefGoogle Scholar
  29. Liao CT, Chang JT, Wang HM et al (2009) Pretreatment primary tumor SUVmax measured by FDG-PET and pathologic tumor depth predict for poor outcomes in patients with oral cavity squamous cell carcinoma and pathologically positive lymph nodes. Int J Radiat Oncol Biol Phys 73(3):764–771PubMedCrossRefGoogle Scholar
  30. Lin C, Itti E, Haioun C et al (2007) Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med 48:1626–1632PubMedCrossRefGoogle Scholar
  31. Linecker A, Kermer C, Sulzbacher I et al (2008) Uptake of (18)F-FLT and (18)F-FDG in primary head and neck cancer correlates with survival. Nuklearmedizin 47(2):80–85PubMedGoogle Scholar
  32. Lordick F, Ott K, Krause BJ et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8:797–805PubMedCrossRefGoogle Scholar
  33. Machtay M, Natwa M, Andrel J et al (2009) Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck 31(2):195–201PubMedCrossRefGoogle Scholar
  34. Minn H, Lapela M, Klemi PJ et al (1997) Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 38(12):1907–1911PubMedGoogle Scholar
  35. Nakao K, Mochiki M, Nibu K et al (2006) Analysis of prognostic factors of nasopharyngeal carcinoma: impact of in situ hybridization for Epstein–Barr virus encoded small RNA1. Otolaryngol Head Neck Surg 134:639–645PubMedCrossRefGoogle Scholar
  36. Okada J, Oonishi H, Yoshikawa K et al (1994) FDG-PET for predicting the prognosis of malignant lymphoma. Ann Nucl Med 8(3):187–191PubMedCrossRefGoogle Scholar
  37. Rege S, Safa AA, Chaiken L et al (2000) Positron emission tomography: an independent indicator of radiocurability in head and neck carcinomas. Am J Clin Oncol 23(2):164–169PubMedGoogle Scholar
  38. Roh JL, Ryu CH, Choi SH et al (2007) Clinical utility of 18F-FDG PET for patients with salivary gland malignancies. J Nucl Med 48(2):240–246PubMedGoogle Scholar
  39. Sanghera B, Wong WL, Lodge MA et al (2005) Potential novel application of dual time point SUV measurements as a predictor of survival in head and neck cancer. Nucl Med Commun 26(10):861–867PubMedCrossRefGoogle Scholar
  40. Sasaki R, Komaki R, Macapinlac H et al (2005) [18F]fluorodeoxy-glucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 23:1136–1143PubMedCrossRefGoogle Scholar
  41. Schönberger J, Rüschoff J, Grimm D et al (2002) Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 12(9):747–754PubMedCrossRefGoogle Scholar
  42. Schwartz DL, Rajendran J, Yueh B et al (2004) FDG-PET prediction of head and neck squamous cell cancer outcomes. Arch Otolaryngol Head Neck Surg 130(12):1361–1367PubMedCrossRefGoogle Scholar
  43. Schwarz JK, Siegel BA, Dehdashti F et al (2008) Tumor response and survival predicted by post-therapy FDG-PET/CT in anal cancer. Int J Radiat Oncol Biol Phys 71:180–186PubMedCrossRefGoogle Scholar
  44. Seol YM, Kwon BR, Song MK et al (2010) Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol 49(2):201–208PubMedCrossRefGoogle Scholar
  45. Spiro SG, Buscombe J, Cook G et al (2008) Ensuring the right PET scan for the right patient. Lung Cancer 59:48–56PubMedCrossRefGoogle Scholar
  46. Suh C, Kang YK, Roh JL et al (2008) Prognostic value of tumor 18F-FDG uptake in patients with untreated extranodal natural killer/T-cell lymphomas of the head and neck. J Nucl Med 49(11):1783–1789PubMedCrossRefGoogle Scholar
  47. Thorwarth D, Eschmann SM, Holzner F et al (2006) Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol 80(2):151–156PubMedCrossRefGoogle Scholar
  48. Torizuka T, Tanizaki Y, Kanno T et al (2009) Prognostic value of 18F-FDG PET in patients with head and neck squamous cell cancer. AJR Am J Roentgenol 192(4):W156–W160PubMedCrossRefGoogle Scholar
  49. van Tinteren H, Hoekstra OS, Smit EF et al (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359:1388–1393PubMedCrossRefGoogle Scholar
  50. Wieder HA, Beer AJ, Lordick F et al (2005) Comparison of changes in tumor metabolic activity and tumor size during chemotherapy of adenocarcinomas of the esophagogastric junction. J Nucl Med 46:2029–2034PubMedGoogle Scholar
  51. Xie P, Yue JB, Fu Z et al (2010a) Prognostic value of 18F-FDG PET/CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann Oncol 21(5):1078–1082PubMedCrossRefGoogle Scholar
  52. Xie P, Yue JB, Zhao HX et al (2010b) Prognostic value of 18F-FDG PET-CT metabolic index for nasopharyngeal carcinoma. J Cancer Res Clin Oncol 136(6):883–889PubMedCrossRefGoogle Scholar
  53. Yao M, Smith RB, Hoffman HT et al (2009) Clinical significance of postradiotherapy [18F]-fluorodeoxyglucose positron emission tomography imaging in management of head-and-neck cancer-a long-term outcome report. Int J Radiat Oncol Biol Phys 74(1):9–14PubMedCrossRefGoogle Scholar
  54. Yen RF, Hong RL, Tzen KY et al (2005) Whole-body 18F-FDG PET in recurrent or metastatic nasopharyngeal carcinoma. J Nucl Med 46(5):770–774PubMedGoogle Scholar
  55. Yen TC, Lin CY, Wang HM et al (2006) 18F-FDG-PET for evaluation of the response to concurrent chemoradiation therapy with intensity-modulated radiation technique for Stage T4 nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 65(5):1307–1314PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Peng Xie
    • 1
  • Minghuan Li
    • 1
  • Hanxi Zhao
    • 1
  • Xindong Sun
    • 1
  • Zheng Fu
    • 1
  • Jinming Yu
    • 1
  1. 1.Department of Radiation OncologyShandong Tumor Hospital and Institute, Key Laboratory of Radiation Oncology of Shandong ProvinceJinanChina

Personalised recommendations