Results of comprehensive geriatric assessment effect survival in patients with malignant lymphoma

  • Nils Winkelmann
  • Iver Petersen
  • Michael Kiehntopf
  • Hans Joerg Fricke
  • Andreas Hochhaus
  • Ulrich Wedding
Original Paper



The prevalence of elderly and comorbid patients (pts) with malignant lymphoma (ML) will steadily increase in future. Elderly patients comprise a heterogeneous population. Comprehensive geriatric assessment (CGA) is an established diagnostic tool in geriatric medicine. However, the prognostic value in patients with ML is unclear. We sought to establish a relationship between results of CGA and survival time in patients with ML.


Newly diagnosed patients with ML and indication for chemotherapeutical treatment were prospectively recruited in an observational trial. In addition to usual diagnostic work up, a CGA including activities of daily living (ADL), instrumental activities of daily living (IADL) and comorbidities was performed. Association of patients’ characteristics and results of CGA with survival were analysed according to Kaplan–Meier method and in a multivariate Cox-regression analysis.


About 143 patients were included, median age was 63 years, 63 patients were women. Median follow-up of surviving patients was 62 months. Sixty-six patients died within this time. Advanced age, poor Karnofsky performance status, dependence in ADL and IADL and presence of severe comorbidity were significantly associated with shorter survival time. In a Cox-regression analysis, IADL (HR 2.1; 95% CI 1.1–3.9) and comorbidity (HR 1.9; 95% CI 0.9–3.9) were independent and strongest associated with survival time.


Results of CGA, such as IADL and comorbidities, are prognostic variables for survival of patients with ML. Results should be validated in homogeneous clinical groups and if confirmed included in diagnostic and therapeutic algorithm.


Geriatric assessment Malignant lymphoma Comorbidity Survival Prognostic value 


  1. Buske C, Hoster E, Dreyling M, Hasford J, Unterhalt M, Hiddemann W (2006) The follicular lymphoma international prognostic index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood 108(5):1504–1508PubMedCrossRefGoogle Scholar
  2. Edwards BK, Howe HL, Ries LA, Thun MJ, Rosenberg HM, Yancik R, Wingo PA, Jemal A, Feigal EG (2002) Annual report to the nation on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden. Cancer 94(10):2766–2792PubMedCrossRefGoogle Scholar
  3. Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar I, Seeff LC, van Ballegooijen M, Goede SL, Ries LA (2010) Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 116(3):544–573PubMedCrossRefGoogle Scholar
  4. Extermann M, Overcash J, Lyman GH, Parr J, Balducci L (1998) Comorbidity and functional status are independent in older cancer patients. J Clin Oncol 16(4):1582–1587PubMedGoogle Scholar
  5. Extermann M, Aapro M, Bernabei R et al (2005) Use of comprehensive geriatric assessment in older cancer patients: recommendations from the task force on CGA of the International Society of Geriatric Oncology (SIOG). Crit Rev Oncol Hematol 55(3):241–252PubMedCrossRefGoogle Scholar
  6. Geisler CH, Kolstad A, Laurell A, Räty R, Jerkeman M, Eriksson M, Nordström M, Kimby E, Boesen AM, Nilsson-Ehle H, Kuittinen O, Lauritzsen GF, Ralfkiaer E, Ehinger M, Sundström C, Delabie J, Karjalainen-Lindsberg ML, Brown P, Elonen E, Group NordicLymphoma (2010) The Mantle Cell Lymphoma International Prognostic Index (MIPI) is superior to the International Prognostic Index (IPI) in predicting survival following intensive first-line immunochemotherapy and autologous stem cell transplantation (ASCT). Blood 115(8):1530–1533PubMedCrossRefGoogle Scholar
  7. Greipp PR, San Miguel J, Durie BG et al (2005) International staging system for multiple myeloma. J Clin Oncol 23(15):3412–3420PubMedCrossRefGoogle Scholar
  8. Hurria A (2009) Geriatric assessment in oncology practice. J Am Geriatr Soc 57(Suppl 2):246–249CrossRefGoogle Scholar
  9. Karnofsky DA, Adelmann WH, Craver FL (1948) The use of nitrogen mustard in the palliative treatment of carcinoma. Cancer 1:634–656CrossRefGoogle Scholar
  10. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9(3):179–186PubMedGoogle Scholar
  11. Linn BS, Linn MW, Gurel L (1968) Cumulative illness rating scale. J Am Geriatr Soc 16(5):622–626PubMedGoogle Scholar
  12. Mahoney FI, Barthel DW (1965) Functional evaluation: the barthel index. Md State Med J 14:61–65PubMedGoogle Scholar
  13. Maione P, Perrone F, Gallo C et al (2005) Pretreatment quality of life and functional status assessment significantly predict survival of elderly patients with advanced non-small-cell lung cancer receiving chemotherapy: a prognostic analysis of the multicenter Italian lung cancer in the elderly study. J Clin Oncol 23(28):6865–6872PubMedCrossRefGoogle Scholar
  14. Maucort-Boulch D, Djeridane M, Roy P, Riche B, Colonna P, Andrieu JM (2007) Predictive and discriminating three-risk-group prognostic scoring system for staging Hodgkin lymphomas. Cancer 109(2):256–264PubMedCrossRefGoogle Scholar
  15. Miller MD, Paradis CF, Houck PR, Mazumdar S, Stack JA, Rifai AH, Mulsant B, Reynolds CF (1992) Rating chronic medical illness burden in geropsychiatric practice and research: application of the cumulative illness rating scale. Psychiatry Res 41(3):237–248PubMedCrossRefGoogle Scholar
  16. Morrison VA (2007) Non-Hodgkin’s lymphoma in the elderly Part 2: treatment of diffuse aggressive lymphomas. Oncology (Williston Park) (10):1191–1198; discussion 1198–1208, 1210Google Scholar
  17. Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS (2006) Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 107(1):2CrossRefGoogle Scholar
  18. Nagel G, Wedding U, Röhrig B, Katenkamp D (2004) The impact of comorbidity on the survival of postmenopausal women with breast cancer. J Cancer Res Clin Oncol 130(11):664–670PubMedCrossRefGoogle Scholar
  19. Piccirillo JF, Vlahiotis A, Barrett LB, Flood KL, Spitznagel EL, Steyerberg EW (2008) The changing prevalence of comorbidity across the age spectrum. Crit Rev Oncol Hematol 67(2):124–132PubMedCrossRefGoogle Scholar
  20. Read WL, Tierney RM, Page NC, Costas I, Govindan R, Spitznagel EL, Piccirillo JF (2004) Differential prognostic impact of comorbidity. J Clin Oncol 22(15):3099–3103PubMedCrossRefGoogle Scholar
  21. Repetto L, Fratino L, Audisio RA, Venturio A, Gianni W, Vercelli M et al (2002) Comprehensive geriatric assessment adds information to Eastern Cooperative Oncology Group performance status in elderly cancer patients: an Italian Group for Geriatric Oncology Study. J Clin Oncol 20(2):494–502PubMedCrossRefGoogle Scholar
  22. Siegel AB, Lachs M, Coleman M, Leonard JP (2006) Lymphoma in elderly patients: novel functional assessment techniques provide better discrimination among patients than traditional performance status measures. Clin Lymphoma Myeloma 7(1):65–69PubMedCrossRefGoogle Scholar
  23. Solal-Céligny P et al (2004) Follicular lymphoma international prognostic index. Blood 104(5):1258–1265PubMedCrossRefGoogle Scholar
  24. Sperr WR, Wimazal F, Kundi M, Baumgartner C, Nösslinger T, Makrai A, Stauder R, Krieger O, Pfeilstöcker M, Valent P (2010) Comorbidity as prognostic variable in MDS: comparative evaluation of the HCT-CI and CCI in a core dataset of 419 patients of the Austrian MDS Study Group. Ann Oncol 21(1):114–119PubMedCrossRefGoogle Scholar
  25. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project (1993) A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 329(14):987–994CrossRefGoogle Scholar
  26. Tucci A, Ferrari S, Bottelli C, Borlenghi E, Drera M, Rossi G (2009) A comprehensive geriatric assessment is more effective than clinical judgment to identify elderly diffuse large cell lymphoma patients who benefit from aggressive therapy. Cancer 115(19):4547–4553PubMedCrossRefGoogle Scholar
  27. Wedding U, Röhrig B, Klippstein A, Fricke HJ, Sayer HG, Höffken K (2006) Impairment in functional status and survival in patients with acute myeloid Leukaemia. J Cancer Res Clin Oncol 132(10):665–671PubMedCrossRefGoogle Scholar
  28. Wedding U, Ködding D, Pientka L, Steinmetz HT, Schmitz S (2007a) Physicians’ judgement and comprehensive geriatric assessment (CGA) select different patients as fit for chemotherapy. Crit Rev Oncol Hematol 64:1–9PubMedCrossRefGoogle Scholar
  29. Wedding U, Röhrig B, Klippstein A, Pientka L, Höffken K (2007b) Age, severe comorbidity and functional impairment independently contribute to poor survival in cancer patients. J Cancer Res Clin Oncol 133(12):945–950PubMedCrossRefGoogle Scholar
  30. WHO Library Cataloguing-in-Publication Data (2004) The global burden of disease: 2004 update. Mortality-trends. ISBN 978 92 4 156371 0Google Scholar
  31. Yancik R, Ganz PA, Varricchio CG, Conley B (2001) Perspectives on comorbidity and cancer in older patients: approaches to expand the knowledge base. J Clin Oncol 19(4):1147–1151PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nils Winkelmann
    • 1
  • Iver Petersen
    • 2
  • Michael Kiehntopf
    • 3
  • Hans Joerg Fricke
    • 1
  • Andreas Hochhaus
    • 1
  • Ulrich Wedding
    • 1
  1. 1.Klinik für Innere Medizin II, Abteilung Hämatologie und internistische OnkologieUniversitätsklinikum JenaJenaGermany
  2. 2.Institut für PathologieUniversitätsklinikum JenaJenaGermany
  3. 3.Institut für Klinische Chemie und LaboratoriumsdiagnostikUniversitätsklinikum JenaJenaGermany

Personalised recommendations