Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer

  • Astrid EnkelmannEmail author
  • Joana Heinzelmann
  • Ferdinand von Eggeling
  • Martina Walter
  • Alexander Berndt
  • Heiko Wunderlich
  • Kerstin Junker
Original Paper



Tumour development and progression are strongly affected by interaction of tumour cells and tumour stroma. Different tumour models demonstrate a supportive effect of tumour-associated fibroblasts (TAF) on the tumour genesis. Aims of the present study are the isolation of TAF from primary urinary bladder tumour specimens and the proteomic and epigenetic characterisation.


TAF were isolated from cultured urinary bladder tumour specimens. Therefore, primary tumour material was treated with EDTA followed by two separated detachment steps. Non-tumour fibroblasts were isolated from foreskin and normal bladder tissues. Proteins and total RNA were isolated from cultured fibroblasts. Protein pattern analyses were carried out by SELDI–TOF–MS. The miRNA expression profile was analysed by miRNA microarray.


By optimising cell culture routines, we achieved to isolate and subsequently cultivate TAF from primary tumour material of the urinary bladder. SELDI–TOF–MS measurements reveal distinct differences in the proteomic patterns of TAF and non-tumour fibroblasts. Microarray analyses indicate specific expression of several miRNAs in TAF and non-tumour fibroblasts.


In summary, we determined proteomic and epigenetic differences between non-tumour fibroblasts and TAF of urinary bladder carcinoma and identified specific protein expression patterns as well as miRNA profiles of TAF in comparison with non-tumour fibroblasts. These findings provide more insights into the complex tumour network and a good starting point for the identification of markers for the prediction of tumour development and progression based on specific TAF expression patterns.


Bladder carcinoma Tumour-associated fibroblasts Cell culture Proteomics MicroRNA 


Conflict of interest statement


Supplementary material

432_2010_932_MOESM1_ESM.pdf (123 kb)
Supplementary material 1 (PDF 122 kb)


  1. Bar-Joseph Z, Siegfried Z, Brandeis M, Brors B, Lu Y, Eils R et al (2008) Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc Nation Acad Sci 105:955–960CrossRefGoogle Scholar
  2. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRefGoogle Scholar
  3. Busch A, Michel S, Hoppe C, Driesch D, Claussen U, von Eggeling F (2005) Proteome analysis of maternal serum samples for trisomy 21 pregnancies using proteinchip arrays and bioinformatics. J Histochem Cytochem 53:341–343PubMedCrossRefGoogle Scholar
  4. Cattan N, Rochet N, Mazeau C, Zanghellini E, Mari B, Chauzy C et al (2001) Establishment of two new human bladder carcinoma cell lines, CAL 29 and CAL 185. Comparative study of cell scattering and epithelial to mesenchyme transition induced by growth factors. Br J Cancer 85:1412–1417PubMedCrossRefGoogle Scholar
  5. Cummins JM, Velculescu VE (2006) Implications of micro-RNA profiling for cancer diagnosis. Oncogene 25:6220–6227PubMedCrossRefGoogle Scholar
  6. Dyrskjot L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, Ramanathan R et al (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69:4851–4860PubMedCrossRefGoogle Scholar
  7. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRefGoogle Scholar
  8. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527PubMedCrossRefGoogle Scholar
  9. Hu M, Polyak K (2008) Microenvironmental regulation of cancer development. Curr Opin Genet Dev 18:27–34PubMedCrossRefGoogle Scholar
  10. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedCrossRefGoogle Scholar
  11. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401PubMedCrossRefGoogle Scholar
  12. Knowles MA (2006) Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis 27:361–373PubMedCrossRefGoogle Scholar
  13. Kunz-Schughart LA, Knuechel R (2002) Tumor-associated fibroblasts (part I): active stromal participants in tumor development and progression? Histol Histopathol 17:599–621PubMedGoogle Scholar
  14. Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N et al (2009) Epigenetic silencing of microRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9:293–301PubMedCrossRefGoogle Scholar
  15. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  16. Mueller MM, Fusenig NE (2004) Friends or foes [mdash] bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849PubMedCrossRefGoogle Scholar
  17. Nazareth MR, Broderick L, Simpson-Abelson MR, Kelleher RJ Jr, Yokota SJ, Bankert RB (2007) Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol 178:5552–5562PubMedGoogle Scholar
  18. Neely LA, Rieger-Christ KM, Neto BS, Eroshkin A, Garver J, Patel S et al (2008) A microRNA expression ratio defining the invasive phenotype in bladder tumors. Urol Oncol 28:39–48Google Scholar
  19. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs [mdash] the micro steering wheel of tumour metastases. Nat Rev Cancer 9:293–302PubMedCrossRefGoogle Scholar
  20. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011PubMedGoogle Scholar
  21. Östman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev 19:67–73PubMedCrossRefGoogle Scholar
  22. Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M et al (2008) No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40:650–655PubMedCrossRefGoogle Scholar
  23. Ruault M, van der Bruggen P, Brun ME, Boyle S, Roizes G, De Sario A (2002) New BAGE (B melanoma antigen) genes mapping to the juxtacentromeric regions of human chromosomes 13 and 21 have a cancer/testis expression profile. Eur J Hum Genet 10:833–840PubMedCrossRefGoogle Scholar
  24. Rumpold H, Mascher K, Untergasser G, Plas E, Hermann M, Berger P (2002) Trans-differentiation of prostatic stromal cells leads to decreased glycoprotein hormone alpha production. J Clin Endocrinol Metab 87:5297–5303PubMedCrossRefGoogle Scholar
  25. Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L et al (2008) Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68:6416–6424PubMedCrossRefGoogle Scholar
  26. Seifert HH, Meyer A, Cronauer MV, Hatina J, Muller M, Rieder H et al (2007) A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder. World J Urol 25:297–302PubMedCrossRefGoogle Scholar
  27. Sorrentino A, Liu C-G, Addario A, Peschle C, Scambia G, Ferlini C (2008) Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol 111:478–486PubMedCrossRefGoogle Scholar
  28. Uchiyama S, Itoh H, Naganuma S, Nagaike K, Fukushima T, Tanaka H et al (2007) Enhanced expression of hepatocyte growth factor activator inhibitor type 2-related small peptide at the invasive front of colon cancers. Gut 56:215–226PubMedCrossRefGoogle Scholar
  29. Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588PubMedCrossRefGoogle Scholar
  30. Wang X, Tang S, Le S-Y, Lu R, Rader JS, Meyers C et al (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE 3:e2557PubMedCrossRefGoogle Scholar
  31. Wiley SR, Cassiano L, Lofton T, Davis-Smith T, Winkles JA, Lindner V et al (2001) A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity 15:837–846PubMedCrossRefGoogle Scholar
  32. Yang G, Rosen DG, Zhang Z, Bast RC, Mills GB, Colacino JA et al (2006) The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Nation Acad Sci 103:16472–16477CrossRefGoogle Scholar
  33. Zhang B, Pan X, Cobb GP, Anderson TA (2007) MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12PubMedCrossRefGoogle Scholar
  34. Zhang C, Fu L, Fu J, Hu L, Yang H, Rong T-H et al (2009) Fibroblast growth factor receptor 2-positive fibroblasts provide a suitable microenvironment for tumor development and progression in esophageal carcinoma. Clin Cancer Res 15:4017–4027PubMedCrossRefGoogle Scholar
  35. Zhong L, Roybal J, Chaerkady R, Zhang W, Choi K, Alvarez CA et al (2008) Identification of secreted proteins that mediate cell-cell interactions in an in vitro model of the lung cancer microenvironment. Cancer Res 68:7237–7245PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Astrid Enkelmann
    • 1
    Email author
  • Joana Heinzelmann
    • 1
  • Ferdinand von Eggeling
    • 2
  • Martina Walter
    • 1
  • Alexander Berndt
    • 3
  • Heiko Wunderlich
    • 1
  • Kerstin Junker
    • 1
  1. 1.Laboratory of Molecular Biology, Department of UrologyJena University HospitalJenaGermany
  2. 2.Institute for Human genetics and AnthropologyJena University HospitalJenaGermany
  3. 3.Institute of PathologyJena University HospitalJenaGermany

Personalised recommendations