MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis

  • Wen Gao
  • Hua Shen
  • Lingxiang Liu
  • Jian Xu
  • Jing Xu
  • Yongqian Shu
Original Paper

Abstract

Purpose

This study compared miRNA expression patterns in primary squamous cell lung carcinoma specimens with those of matched normal lung tissue in order to determine their potential relevance to clinicopathological factors and patient postoperative survival times.

Methods

Locked nucleic acids miRNA microarray expression profiling was performed on four matched pairs of tissues. After microarray validation by quantitative real-time reverse transcription polymerase chain reaction assays (qRT-PCR) (real-time PCR), miR-21 was selected for further TaqMan real-time PCR study in 30 matched tissue pairs.

Results

Seven miRNAs of hsa-miR-21, hsa-miR-31, hsa-miR-34a, hsa-miR-22*, hsa-miR-504, hsa-miR-18a, and hsa-miR-412 were observed to be upregulated greater than twofold in the squamous cell lung carcinoma tissues compared with normal tissues, whereas 23 miRNAs of hsa-miR-30a, hsa-miR-30d, hsa-miR-126, hsa-miR-652, hsa-miR-100, hsa-miR-143, hsa-miR-130a, hsa-miR-145, hsa-miR-30e, hsa-miR-126*, hsa-miR-181a, hsa-miR-125b, hsa-miR-886-3p, hsa-miR-451, hsa-miR-29c, hsa-miR-26b, hsa-miR-101, hsa-miR-320, hsa-miR-30b, hsa-miR-886-5p, hsa-miR-29a, hsa-miR-26a, and hsa-miR-99a were found to be downregulated greater than twofold. MiR-21 was overexpressed in 73.3% of the squamous cell lung carcinoma specimens examined (P = 0.022). The relationship between the miR-21 expression level and various clinicopathologic factors was also analyzed. High-level expression of miR-21 was significantly correlated with shortened survival time (P = 0.022, log-rank test; Kaplan–Meier). Multivariate Cox proportional hazard regression analysis revealed this significant prognostic impact (P = 0.000; HR 1.293; 95% CI 1.123–1.489) to be independent of clinical disease stage (P = 0.013; HR 2.660; 95% CI 1.229–5.758) and other clinicopathologic factors.

Conclusions

Expression patterns of miRNAs were found to be systematically altered in squamous cell lung carcinoma tissue. High miR-21 expression is associated with shortened survival time, indicating that miR-21 may serve as a molecular diagnostic and prognostic marker for patients with squamous cell lung carcinoma.

Keywords

MiR-21 Microarray Prognosis QRT-PCR Real-time PCR Squamous cell lung carcinoma 

Notes

Conflict of interest statement

None.

References

  1. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MiRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136PubMedCrossRefGoogle Scholar
  2. Bartel DP (2004) MiRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  3. Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN, Sadee W (2008) MiRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7:1–9PubMedCrossRefGoogle Scholar
  4. Calin GA, Croce CM (2006a) MiRNA signatures in human cancers. Nat Rev Cancer 6:857–866PubMedCrossRefGoogle Scholar
  5. Calin GA, Croce CM (2006b) MiRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394PubMedCrossRefGoogle Scholar
  6. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU (2006) A sensitive array for miRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12:913–920PubMedCrossRefGoogle Scholar
  7. Chan JA, Krichevsky AM, Kosik KS (2005) MiRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedCrossRefGoogle Scholar
  8. Chan SH, Wu CW, Li AF, Chi CW, Lin WC (2008) MiR-21 miRNA expression in human gastric carcinomas and its clinical association. Anticancer Res 28:907–911PubMedGoogle Scholar
  9. Chen Y, Knösel T, Kristiansen G, Pietas A, Garber ME, Matsuhashi S, Ozaki I, Petersen I (2003) Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol 200:640–646PubMedCrossRefGoogle Scholar
  10. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of miRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCrossRefGoogle Scholar
  11. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  12. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the miRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033PubMedCrossRefGoogle Scholar
  13. Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L, Magrelli A, Citarella F, Messina M, Maggio R, Peragine N, Santangelo S, Mauro FR, Landgraf P, Tuschl T, Weir DB, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Guarini A, Foà R, Macino G (2007) Quantitative technologies establish a novel miRNA profile of chronic lymphocytic leukemia. Blood 109:4944–4951PubMedCrossRefGoogle Scholar
  14. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MiRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380PubMedCrossRefGoogle Scholar
  15. Gao W, Yu Y, Cao HL, Shen H, Li XD, Pan SY, Shu YQ (2010) Deregulated expression of miR-21,miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother (in press, accepted on Jan 29, 2010)Google Scholar
  16. Greene FL, Page DL, Fleming ID et al (2002) AJCC cancer staging handbook—TNM classification of malignant tumors, 6th edn. Springer, New YorkCrossRefGoogle Scholar
  17. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM (2007) MiRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707PubMedCrossRefGoogle Scholar
  18. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 miRNA family. Cell 120:635–647PubMedCrossRefGoogle Scholar
  19. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T, Takahashi T (2005) Reduced expression of dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115PubMedCrossRefGoogle Scholar
  20. Laskin JJ, Sandler AB (2005) State of the art in therapy for non-small cell lung cancer. Cancer Invest 23:427–442PubMedGoogle Scholar
  21. Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC, Cattan H, Enver T, Mager R, Boultwood J, Wainscoat JS, Hatton CS (2007) MiRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121:1156–1161PubMedCrossRefGoogle Scholar
  22. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL (2008) Detection of elevated levels of tumour associated miRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675PubMedCrossRefGoogle Scholar
  23. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MiRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  24. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129PubMedCrossRefGoogle Scholar
  25. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MiRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658PubMedCrossRefGoogle Scholar
  26. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25:2537–2545PubMedCrossRefGoogle Scholar
  27. Neely LA, Rieger-Christ KM, Neto BS, Eroshkin A, Garver J, Patel S, Phung NA, McLaughlin S, Libertino JA, Whitney D, Summerhayes IC (2010) A microRNA expression ratio defining the invasive phenotype in bladder tumors. Urol Oncol 28:39–48PubMedGoogle Scholar
  28. Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH, Kudrolli TA, Yegnasubramanian S, Luo J, Rodriguez R, Mendell JT, Lupold SE (2009) MiR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69:7165–7169PubMedCrossRefGoogle Scholar
  29. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC (2008) MiRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436PubMedCrossRefGoogle Scholar
  30. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) MiR-21-mediated tumor growth. Oncogene 26:2799–2803PubMedCrossRefGoogle Scholar
  31. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402PubMedCrossRefGoogle Scholar
  32. Sobin LH, Wittekind C (2002) UICC TNM classification of malignant tumours, 6th edn. Wiley, New YorkGoogle Scholar
  33. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 miRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRefGoogle Scholar
  34. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM (2006) Extensive post-transcriptional regulation of miRNAs and its implications for cancer. Genes Dev 20:2202–2207PubMedCrossRefGoogle Scholar
  35. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MiRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360PubMedCrossRefGoogle Scholar
  36. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique miRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198PubMedCrossRefGoogle Scholar
  37. Yi Z, Fu Y, Zhao S, Zhang X, Ma C (2009, Nov 17) Differential expression of miRNA patterns in renal cell carcinoma and nontumorous tissues. J Cancer Res Clin Oncol [Epub ahead of print]Google Scholar
  38. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, Cheng CL, Yu CJ, Lee YC, Chen HS, Su TJ, Chiang CC, Li HN, Hong QS, Su HY, Chen CC, Chen WJ, Liu CC, Chan WK, Chen WJ, Li KC, Chen JJ, Yang PC (2007) MiRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57CrossRefGoogle Scholar
  39. Zhu S, Si ML, Wu H, Mo YY (2007) MiRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336PubMedCrossRefGoogle Scholar
  40. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MiRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Wen Gao
    • 1
  • Hua Shen
    • 1
  • Lingxiang Liu
    • 1
  • Jian Xu
    • 2
  • Jing Xu
    • 1
  • Yongqian Shu
    • 1
  1. 1.Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Department of Clinical LaboratoryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations