Journal of Cancer Research and Clinical Oncology

, Volume 136, Issue 12, pp 1853–1859 | Cite as

A polymorphism of microRNA196a genome region was associated with decreased risk of glioma in Chinese population

  • Tonghai Dou
  • Qihan Wu
  • Xin Chen
  • Judit Ribas
  • Xiaohua Ni
  • Cheng Tang
  • Fengping Huang
  • Liangfu Zhou
  • Daru Lu
Original Paper

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in regulation of eukaryotic gene expression. Aberrant expression and structural alternation of miRNAs are considered to participate in tumorigenesis and cancer development. Recently, different genotypes of miR-196a polymorphisms (SNP, rs11614913) were found to be associated with the survival of patients with lung cancer and increased risk of breast cancer. To further investigate whether this polymorphism may influence glioma risk or not, we examined the SNP allele frequency in Chinese population. Our data shows the genotype CC of miR-196a (rs11614913) polymorphism is associated with decreased risk of glioma in the Chinese population (OR = 0.74, 95% CI:0.56–0.98). Furthermore, a significant association was observed between this genotype and glioma risk in the subgroups of adult glioma (OR = 0.73, 95% CI:0.55–0.98), male glioma (OR = 0.69, 95% CI:0.48–0.99) and patients with glioblastoma (OR = 0.58, 95% CI:0.37–0.91). This was the first study investigating the association between the miR-196a rs11614913 and glioma risk. Compared with the results from previous studies in lung cancer and breast cancer, our data suggest a different genotype association in glioma. This may be related to the diversity on the tissue origin, tumor type, tumorigenesis, and developing process.

Keywords

microRNA Polymorphism Glioma Genetic variation 

References

  1. Abdel-Fattah R, Xiao A, Bomgardner D et al (2006) Differential expression of HOX genes in neoplastic and non-neoplastic human astrocytes. J Pathol 209:15–24. doi:10.1002/path.1939 CrossRefPubMedGoogle Scholar
  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. doi:10.1038/nature02871 CrossRefPubMedGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  4. Bethke L, Sullivan K, Webb E et al (2008) The common D302H variant of CASP8 is associated with risk of glioma cancer. Epidemiol Biomarkers Prev 17:987–989. doi:10.1158/1055-9965.EPI-07-2807 CrossRefGoogle Scholar
  5. Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908. doi:10.1001/jama.297.17.1901 CrossRefPubMedGoogle Scholar
  6. Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358. doi:10.1016/j.bbrc.2005.07.030 CrossRefPubMedGoogle Scholar
  7. de Bont JM, den Boer ML, Kros JM et al (2007) Identification of novel biomarkers in pediatric primitive neuroectodermal tumors and ependymomas by proteome-wide analysis. J Neuropathol Exp Neurol 66(6):505–516. doi:10.1097/01.jnen.0000240475.35414.c3 CrossRefPubMedGoogle Scholar
  8. Debernardi S, Skoulakis S, Molloy G et al (2007) MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21(5):912–916PubMedGoogle Scholar
  9. Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16:1124–1131. doi:10.1093/hmg/ddm062 CrossRefPubMedGoogle Scholar
  10. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269. doi:10.1038/nrc1840 CrossRefPubMedGoogle Scholar
  11. Griffiths-Jones S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158. doi:10.1093/nar/gkm952 CrossRefPubMedGoogle Scholar
  12. Hornstein E, Mansfield JH, Yekta S et al (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438:671–674. doi:10.1038/nature04138 CrossRefPubMedGoogle Scholar
  13. Hu Z, Chen J, Tian T et al (2008a) Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 118(7):2600–2608PubMedGoogle Scholar
  14. Hu Z, Liang J, Wang Z et al (2008b) Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat 30(1):79–84. doi:10.1002/humu.20837 CrossRefGoogle Scholar
  15. Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. doi:10.1158/0008-5472.CAN-05-1783 CrossRefPubMedGoogle Scholar
  16. Kefas B, Godlewski J, Comeau L et al (2008) MicroRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572. doi:10.1158/0008-5472.CAN-07-6639 CrossRefPubMedGoogle Scholar
  17. Kleihues P et al (2000) Pathology and Genetics of Tumors of the Nervous System. IARC Press, LyonGoogle Scholar
  18. Krek A, Gru¨n D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500. doi:10.1038/ng1536 CrossRefPubMedGoogle Scholar
  19. Kumar MS, Lu J, Mercer KL et al (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677. doi:10.1038/ng2003 CrossRefPubMedGoogle Scholar
  20. Lee RC, Feinbaum RL, Ambros V et al (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi:10.1016/0092-8674(93)90529-Y CrossRefPubMedGoogle Scholar
  21. Liu Y, Zhang H, Zhou K et al (2007) Tagging SNPs in nonhomologous end-joining pathway genes and risk of glioma. Carcinogenesis 28:1906–1913. doi:10.1093/carcin/bgm073 CrossRefPubMedGoogle Scholar
  22. Louis DN (2006) Molecular pathology of malignant gliomas. Annu Rev Pathol 1:97–117. doi:10.1146/annurev.pathol.1.110304.100043 CrossRefPubMedGoogle Scholar
  23. Luthra R, Singh RR, Luthra MG et al (2008) MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene 27(52):6667–6678. doi:10.1038/onc.2008.256 CrossRefPubMedGoogle Scholar
  24. Ma L, Weinberg RA (2008) Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 24:448–456. doi:10.1016/j.tig.2008.06.004 CrossRefPubMedGoogle Scholar
  25. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688. doi:10.1038/nature06174 CrossRefPubMedGoogle Scholar
  26. Miska EA (2005) How microRNAs control cell division, differentiationand death. Curr Opin Genet Dev 15:563–568. doi:10.1016/j.gde.2005.08.005 CrossRefPubMedGoogle Scholar
  27. Parkin DM et al (2002) Cancer Incidence in Five Continents. IARC Press, LyonGoogle Scholar
  28. Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci 104(9):3300–3305. doi:10.1073/pnas.0611347104 CrossRefPubMedGoogle Scholar
  29. Szafranska AE, Davison TS, John J et al (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26(30):4442–4452. doi:10.1038/sj.onc.1210228 CrossRefPubMedGoogle Scholar
  30. Tian T, Shu Y, Chen J et al (2009) A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev 18(4):1183–1187. doi:10.1158/1055-9965.EPI-08-0814 CrossRefPubMedGoogle Scholar
  31. Yanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198. doi:10.1016/j.ccr.2006.01.025 CrossRefPubMedGoogle Scholar
  32. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596. doi:10.1126/science.1097434 CrossRefPubMedGoogle Scholar
  33. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524. doi:10.1126/science.1111444 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tonghai Dou
    • 1
  • Qihan Wu
    • 2
  • Xin Chen
    • 2
  • Judit Ribas
    • 5
  • Xiaohua Ni
    • 5
  • Cheng Tang
    • 2
  • Fengping Huang
    • 4
  • Liangfu Zhou
    • 4
  • Daru Lu
    • 2
    • 3
  1. 1.Department of Microbiology School of Life SciencesFudan UniversityShanghaiChina
  2. 2.Department of Biomedicine, School of Life ScienceEast China Normal UniversityShanghaiChina
  3. 3.State Key Laboratory of Genetic Engineering, Center for Fudan-VARI Genetics Epidemiology and MOE Key Laboratory of Contemporary Anthropology, School of Life SciencesFudan UniversityShanghaiChina
  4. 4.Neurosurgery Department of Huashan HospitalFudan UniversityShanghaiChina
  5. 5.The James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations