Journal of Cancer Research and Clinical Oncology

, Volume 136, Issue 12, pp 1813–1819 | Cite as

Analysis of common germline polymorphisms as prognostic factors in patients with lymph node-positive breast cancer

  • Gudrun Knechtel
  • Günter Hofmann
  • Armin Gerger
  • Wilfried Renner
  • Tanja Langsenlehner
  • Joanna Szkandera
  • Gerald Wolf
  • Hellmut Samonigg
  • Peter Krippl
  • Uwe Langsenlehner
Original Paper



Women with breast cancer that initially involves local lymph nodes have a higher risk for local recurrence or developing metastases. Recent data suggest that germline polymorphism is a significant, previously unrecognized factor in breast cancer progression and metastasis. We assessed the influence of 16 selected common germline polymorphisms in disease-free survival and overall survival among 216 women diagnosed with lymph node-positive breast cancer.


The rare allele of FAS 1377G>A was significantly associated with prolonged disease-free survival (P = 0.012, risk ratio of recurrence (RR) = 0.557, 95% confidence interval (CI) = 0.353–0.878) in univariate analysis. After adjusting for known breast cancer prognostic factors the association remained significant (P = 0.050, RR = 0.500, CI = 0.309–0.809). In overall survival analysis we found a significant association of the FAS 1377G>A (P = 0.040, RR = 0.451, CI = 0.496–1.188) and IL10 592C>A polymorphisms (P = 0.020, RR = 1.707, CI = 1.087–2.680) in the univariate Cox regression. The effect remained statistically significant in the multivariate analysis for the IL10 592C>A polymorphism (P = 0.013, RR 1.841, CI 1.140–2.973). No association was found for MTHFR 677C>T, VEGF 936C>T, CCND1 870G>A, TGFB1 29T>C, FASLG 844C>T, FAS 670A>G, GPB3 825C>T, ITGA2 807C>T, ITGA2 1648G>A, ITGB3 176T>C, MMP1 -1607 1G/2G, MMP3 5A/6A, PTGS2 8473T>C, IL10 592C>A and SULT1A1 638G>A polymorphisms and disease-free survival or overall survival.


Our data suggest that the FAS 1377G>A and IL10 592C>A polymorphisms could modify disease-free and overall survival in women with lymph node-positive breast cancer.


Breast cancer Prognosis Polymorphism Lymph node-positive 


Conflict of interest statements

All authors of the study declare to have no conflict of interest.


  1. Balasubramanian SP, Azmy IA, Higham SE, Wilson AG, Cross SS, Cox A, Brown NJ, Reed MW (2006) Interleukin gene polymorphisms and breast cancer: a case control study and systematic literature review. BMC Cancer 6:188CrossRefPubMedGoogle Scholar
  2. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J 23:3175–3185CrossRefPubMedGoogle Scholar
  3. Campbell IG, Baxter SW, Eccles DM, Choong DY (2002) Methylenetetrahydrofolate reductase polymorphism and susceptibility to breast cancer. Breast Cancer Res 4:R14CrossRefPubMedGoogle Scholar
  4. Clar H, Langsenlehner U, Krippl P, Renner W, Leithner A, Gruber G, Hofmann G, Yazdani-Biuki B, Langsenlehner T, Windhager R (2008) A polymorphism in the G protein beta3-subunit gene is associated with bone metastasis risk in breast cancer patients. Breast Cancer Res Treat 111:449–452CrossRefPubMedGoogle Scholar
  5. Crew KD, Gammon MD, Terry MB, Zhang FF, Agrawal M, Eng SM, Sagiv SK, Teitelbaum SL, Neugut AI, Santella RM (2007) Genetic polymorphisms in the apoptosis-associated genes FAS and FASL and breast cancer risk. Carcinogenesis 28:2548–2551CrossRefPubMedGoogle Scholar
  6. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147:3815–3822PubMedGoogle Scholar
  7. Gerger A, Langsenlehner U, Renner W, Weitzer W, Eder T, Yazdani-Biuki B, Hofmann G, Samonigg H, Krippl P (2007) A multigenetic approach to predict breast cancer risk. Breast Cancer Res Treat 104:159–164CrossRefPubMedGoogle Scholar
  8. Gerger A, Renner W, Langsenlehner T, Hofmann G, Knechtel G, Szkandera J, Samonigg H, Krippl P, Langsenlehner U (2010) Association of interleukin-10 gene variation with breast cancer prognosis. Breast Cancer Res Treat 119:701–705CrossRefPubMedGoogle Scholar
  9. Gormus U, Ergen A, Yaylim-Eraltan I, Yilmaz H, Turna A, Bozkurt N, Isbir T (2007) Fas-1377 A/G polymorphism in lung cancer. In Vivo 21:663–666PubMedGoogle Scholar
  10. Holliday DL, Hughes S, Shaw JA, Walker RA, Jones JL (2007) Intrinsic gene characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion. Breast Cancer Res 9:67CrossRefGoogle Scholar
  11. Honig SF (1996) Treatment of metastatic disease: hormonal therapy and chemotherapy. In: Harris JR, Lippman M, Morrow M (eds) Diseases of the breast. Lippincott-Raven Publishers, Philadelphia, pp 669–734Google Scholar
  12. Howell WM, Rose-Zerilli MJ (2006) Interleukin-10 polymorphisms, cancer susceptibility and prognosis. Fam Cancer 5:143–149CrossRefPubMedGoogle Scholar
  13. Jacobs EJ, Feigelson HS, Bain EB, Brady KA, Rodriguez C, Stevens VL, Patel AV, Thun MJ, Calle EE (2006) Polymorphisms in the vascular endothelial growth factor gene and breast cancer in the cancer prevention study II cohort. Breast Cancer Res 8:R22CrossRefPubMedGoogle Scholar
  14. Kang S, Dong SM, Seo SS, Kim JW, Park SY (2008) FAS -1377 G/A polymorphism and the risk of lymph node metastasis in cervical cancer. Cancer Genet Cytogenet 180:1–5CrossRefPubMedGoogle Scholar
  15. Kim JG, Chae YS, Sohn SK, Cho YY, Moon JH, Park JY, Jeon SW, Lee IT, Choi GS, Jun SH (2008) Vascular endothelial growth factor gene polymorphisms associated with prognosis for patients with colorectal cancer. Clin Cancer Res 14:62–66CrossRefPubMedGoogle Scholar
  16. Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, Paulweber B, Bahadori B, Samonigg H (2003) The L10P polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett 201:181–184CrossRefPubMedGoogle Scholar
  17. Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, Paulweber B, Samonigg H (2004) The 825C>T polymorphism of the G-protein beta-3 subunit gene (GNB3) and breast cancer. Cancer Lett 206:59–62CrossRefPubMedGoogle Scholar
  18. Langsenlehner U, Krippl P, Renner W, Yazdani-Biuki B, Eder T, Wolf G, Wascher TC, Paulweber B, Weitzer W, Samonigg H (2004) Genetic variants of the sulfotransferase 1A1 and breast cancer risk. Breast Cancer Res Treat 87:19–22CrossRefPubMedGoogle Scholar
  19. Langsenlehner U, Yazdani-Biuki B, Eder T, Renner W, Wascher TC, Paulweber B, Weitzer W, Samonigg H, Krippl P (2006) The cyclooxygenase-2 (PTGS2) 8473T>C polymorphism is associated with breast cancer risk. Clin Cancer Res 12:1392–1394CrossRefPubMedGoogle Scholar
  20. Le Marchand L, Haiman CA, van den Berg D, Wilkens LR, Kolonel LN, Henderson BE (2004) T29C polymorphism in the transforming growth factor beta1 gene and postmenopausal breast cancer risk: the Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 13:412–415PubMedGoogle Scholar
  21. Lee JK, Sayers TJ, Back TC, Wigginton JM, Wiltrout RH (2003) Lack of FasL-mediated killing leads to in vivo tumor promotion in mouse Lewis lung cancer. Apoptosis 8:151–160CrossRefPubMedGoogle Scholar
  22. Lei H, Zaloudik J, Vorechovsky L (2002) Lack of association of the -1171 (5A) allele of the MMP3 promoter with breast cancer. Clin Chem 48:798–799PubMedGoogle Scholar
  23. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH, Hunter KW (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77:640–644CrossRefPubMedGoogle Scholar
  24. Linnebank M, Semmler A, Moskau S, Smulders Y, Blom H, Simon M (2008) The methylenetetrahydrofolate reductase (MTHFR) variant c.677C>T (A222 V) influences overall survival of patients with glioblastoma multiforme. Neuro Oncol 10:548–552CrossRefPubMedGoogle Scholar
  25. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235CrossRefPubMedGoogle Scholar
  26. Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M (2004) The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev 15:61–76CrossRefPubMedGoogle Scholar
  27. Müschen M, Warskulat U, Beckmann MW (2000) Defining CD95 as a tumor suppressor gene. J Mol Med 78:312–325CrossRefPubMedGoogle Scholar
  28. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456CrossRefPubMedGoogle Scholar
  29. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics 2002. CA Cancer J Clin 55:74–108CrossRefPubMedGoogle Scholar
  30. Qui LX, Shi J, Yuan H, Jiang X, Xue K, Pan HF, Li J, Zheng MH (2009) FAS-1377 G/A polymorphism is associated with cancer susceptibility: evidence from 10,564 cases and 12,075 controls. Hum Gen 125:431–435CrossRefGoogle Scholar
  31. Shinohara H, Yagita H, Ikawa Y, Oyaizu N (2000) Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res 60:1766–1772PubMedGoogle Scholar
  32. Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL, Skibola CF, Smith MT, Morgan GJ (2003) Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res 63:4327–4330PubMedGoogle Scholar
  33. Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D (2004) Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 96:1030–1036CrossRefPubMedGoogle Scholar
  34. Takayama H, Takakuwa T, Tsujimoto Y, Nonomura N, Okuyama A, Aozasa K (2002) Analysis of Fas gene mutations on laser capture microdissected specimens from renal cell carcinoma. Jpn J Cancer Res 93:1201–1206PubMedGoogle Scholar
  35. Ter-Minassian M, Zhai R, Asomaning K, Su L, Zhou W, Liu G, Heist RS, Lynch TJ, Wain JC, Lin X, De Vivo I, Christiani DC (2008) Apoptosis gene polymorphisms, age, smoking and the risk of non-small cell lung cancer. Carcinogenesis 29:2147–2152CrossRefPubMedGoogle Scholar
  36. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV (1997) An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 24:1–8PubMedGoogle Scholar
  37. Wesche-Soldato DE, Swan RZ, Chung CS, Ayala A (2007) The apoptotic pathway as a therapeutic target in sepsis. Curr Drug Targets 8:493–500CrossRefPubMedGoogle Scholar
  38. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421CrossRefPubMedGoogle Scholar
  39. Yaylim-Eraltan I, Ergen A, Görmüs U, Arikan S, Küçücük S, Sahin O, Yigit N, Yildiz Y, Isbir T (2009) Breast cancer and cyclin D1 gene polymorphism in Turkish women. In Vivo 23:767–772PubMedGoogle Scholar
  40. Zhang Z, Wang LE, Sturgis EM, El-Naggar AK, Hong WK, Amos CI, Spitz MR, Wei Q (2006) Polymorphisms of FAS and FAS ligand genes involved in the death pathway and risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res 12:5596–5602CrossRefPubMedGoogle Scholar
  41. Zhang B, Sun T, Xue L, Han X, Zhang B, Lu N, Shi Y, Tan W, Zhou Y, Zhao D, Zhang X, Guo Y, Lin D (2007) Functional polymorphisms in FAS and FASL contribute to increased apoptosis of tumor infiltration lymphocytes and risk of breast cancer. Carcinogenesis 28:1067–1073CrossRefPubMedGoogle Scholar
  42. Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182:3801–3808CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gudrun Knechtel
    • 1
  • Günter Hofmann
    • 1
  • Armin Gerger
    • 1
  • Wilfried Renner
    • 2
  • Tanja Langsenlehner
    • 3
  • Joanna Szkandera
    • 1
  • Gerald Wolf
    • 4
  • Hellmut Samonigg
    • 1
  • Peter Krippl
    • 5
  • Uwe Langsenlehner
    • 6
  1. 1.Department of Internal Medicine, Division of OncologyMedical University GrazGrazAustria
  2. 2.Clinical Institute of Medical and Laboratory DiagnosticsMedical University GrazGrazAustria
  3. 3.Clinic of Therapeutic Radiology and OncologyMedical University GrazGrazAustria
  4. 4.Department of Radiology and Nuclear MedicineGeneral Hospital LeobenLeobenAustria
  5. 5.Department of Internal MedicineRegional Hospital of FuerstenfeldFuerstenfeldAustria
  6. 6.Internal Outpatient DepartmentSteiermaerkische GebietskrankenkasseGrazAustria

Personalised recommendations