Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 136, Issue 11, pp 1657–1669 | Cite as

Alterations in p53, BRCA1, ATM, PIK3CA, and HER2 genes and their effect in modifying clinicopathological characteristics and overall survival of Bulgarian patients with breast cancer

  • Stefan S. Bozhanov
  • Svetla G. Angelova
  • Maria E. Krasteva
  • Tsanko L. Markov
  • Svetlana L. Christova
  • Ivan G. Gavrilov
  • Elena I. GeorgievaEmail author
Original Paper

Abstract

Purpose

Though p53, BRCA1, ATM, PIK3CA, and HER2 genes are shown to be involved in various aspects of breast carcinogenesis, their functional relationship and clinical value are still disputable. We investigated the genetic status or expression profile of these genes to further elucidate their clinical significance.

Methods

PCR-SSCP-Sequencing of p53, BRCA1, ATM, and PIK3CA was performed in 145 Bulgarian patients with sporadic breast cancer. Expression profiles of HER2 were determined by ICH and CISH. Relationship between mutations and clinicopathological characteristics was evaluated by Chi-squared and Fisher’s exact tests. Multivariate Cox proportional hazard test and Kaplan–Meier analysis were used to evaluate differences in overall survival between groups.

Results

The frequency of p53 (22.07%), BRCA1 (0.69%), ATM (7.59%), and PIK3CA (31.25%) alterations and HER2 (21.21%) overexpression was estimated. Mutated p53 was associated with tumor size (P = 0.033) and grade of malignancy (P = 0.001), ATM—with grade of malignancy (P = 0.032), and PIK3CA—with PR-positive tumors (P = 0.047). HER2 overexpression correlated with age of diagnosis (P = 0.009), tumor size (P = 0.0004), and ER expression (P = 0.011). Univariate survival analysis showed that mutated p53 is an indicator for worse outcome (P = 0.041). Combination of two genetic abnormalities did not correlate with more aggressive carcinogenesis and worse overall survival.

Conclusions

Our data indicated that p53, BRCA1, ATM, PIK3CA, and HER2 alterations specifically correlate with clinicopathological characteristics of Bulgarian patients with breast cancer. Of these genes, only mutated p53 showed significant, though not independent, negative effect on overall survival.

Keywords

Breast cancer Tumor suppressor genes Proto-oncogenes Mutations Clinicopathological characteristics Overall survival 

Abbreviations

BC

Breast cancer

IHC

Immunohistochemical analysis

CISH

Chromogenic in situ Hybridization

OS

Overall survival

T

Tumor size

N

Nodal status

G

Grade of malignancy

ER

Estrogen receptor

PR

Progesterone receptor

HR

Hazard ratio

CI

Confidence interval

Notes

Acknowledgments

Authors express their gratitude to Dr. Maria Nacheva who provided assistance in collecting of samples. We are grateful to Dr. Milka Georgieva for the critical reading of manuscript. This work was funded by the Bulgarian Ministry of Education and Science, projects No G-1-04/04 and DO 02.310/08.

Conflict of interest statement

We declare that we have no competing interests.

References

  1. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C, Peters BA, Velculescu VE, Park BH (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3:772–775CrossRefPubMedGoogle Scholar
  2. Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA 103:1475–1479. doi: 10.1073/pnas.0510857103 CrossRefPubMedGoogle Scholar
  3. Barbareschi M, Buttitta F, Felicioni L, Cotrupi S, Barassi F, Del Grammastro M, Ferro A, Dalla Palma P, Galligioni E, Marchetti A (2007) Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res 13:6064–6069. doi: 10.1158/1078-0432.CCR-07-0266 CrossRefPubMedGoogle Scholar
  4. Bartkova J, Horvejsv Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland MJ, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870CrossRefPubMedGoogle Scholar
  5. Borresen-Dale AL (2003) TP53 and breast cancer. Hum Mutat 21:292–300. doi: 10.1002/humu.10174 CrossRefPubMedGoogle Scholar
  6. Bull SB, Ozcelik H, Pinnaduwage D, Blackstein ME, Sutherland DA, Pritchard KI, Tzontcheva AT, Sidlofsky S, Hanna WM, Qizilbash AH, Tweeddale ME, Fine S, McCready DR, Andrulis IL (2004) The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J Clin Oncol 22:86–96. doi: 10.1200/JCO.2004.09.128 CrossRefPubMedGoogle Scholar
  7. Buzin CH, Tang SH, Cunningham JM, Shibata A, Ross RK, Hartmann A, Blaszyk H, Kovach JS (2001) Low frequency of p53 gene mutations in breast cancers of Japanese-American women. Nutr Cancer 39:72–77CrossRefPubMedGoogle Scholar
  8. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB, Phillips WA (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64:7678–7681CrossRefPubMedGoogle Scholar
  9. Carr JA, Havstad S, Zarbo RJ, Divine G, Mackowiak P, Velanovich V (2000) The association of HER-2/neu amplification with breast cancer recurrence. Arch Surg 135:1469–1474CrossRefPubMedGoogle Scholar
  10. Danon Sh, Valerianova Zdr, Ivanova Tzv (2006) Bulgarian National Cancer Registry. Cancer incidence in Bulgaria 2003. Bulgarian Publishing House, SofiaGoogle Scholar
  11. Dork T, Bendix R, Bremer M, Rades D, Klopper K, Nicke M, Skawran B, Hector A, Yamini P, Steinmann D, Weise S, Stuhrmann M, Karstens JH (2001) Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res 61:7608–7615PubMedGoogle Scholar
  12. Easton DF (1994) Cancer risks in A–T heterozygotes. Int J Radiat Biol 66:177–182CrossRefGoogle Scholar
  13. Elledge RM, Fuqua SAW, Clark GM, Pujol P, Allred DC, Mcguire WL (1993) Prognostic significance of p53 gene alterations in nodenegative breast cancer. Breast Cancer Res Treat 26:225–235CrossRefPubMedGoogle Scholar
  14. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92(Suppl 7):564–569CrossRefPubMedGoogle Scholar
  15. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BAJ, Gayther SA, Birch JM, Lindblom A, Stoppa-Lyonnet D, Bignon Y, Borg A, Hamann U et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676–689CrossRefPubMedGoogle Scholar
  16. Friedman LS, Ostermeyer EA, Szabo CI, Dowd P, Lynch ED, Rowell SE, King MC (1994) Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat Genet 8:399–404CrossRefPubMedGoogle Scholar
  17. Gatti RA, Tward A, Concannon P (1999) Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab 68:419–423. doi: 10.1006/mgme.1999.2942 CrossRefPubMedGoogle Scholar
  18. Georgieva M, Krasteva M, Angelova E, Ralchev K, Dimitrov V, Bozhimirov S, Georgieva E, Berger MR (2008) Analysis of the K-ras/B-raf/Erk signal cascade, p53 and CMAP as markers for tumor progression in colorectal cancer patients. Oncol Rep 20(Suppl 1):3–11PubMedGoogle Scholar
  19. González-Hormazábal P, Bravo T, Blanco R, Valenzuela YC, Gómez F, Waugh E, Peralta O, Ortuzar W, Reyes JM, Jara L (2008) Association of common ATM variants with familial breast cancer in a South American population. BMC Cancer 8:117. doi: 10.1186/1471-2407-8-117 CrossRefPubMedGoogle Scholar
  20. Heikkinen K, Rapakko K, Karppinen SM, Erkko H, Nieminen P, Winqvist R (2005) Association of common ATM polymorphism with bilateral breast cancer. Int J Cancer 116:69–72. doi: 10.1002/ijc.20996 CrossRefPubMedGoogle Scholar
  21. Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J, Ohta M, Jazag A, Guleng B, Tateishi K, Asaoka Y, Matsumura M, Kawabe T, Omata M (2005) Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65:4562–4567CrossRefPubMedGoogle Scholar
  22. Izatt L, Greenman J, Hodgson S, Ellis D, Watts S, Scott G, Jacobs C, Liebmann R, Zvelebil MJ, Mathew C, Solomon E (2000) Identification of germline missense mutations and rare allelic variants in the ATM gene in early-onset breast cancer. Genes Chromosomes Cancer 26:286–294CrossRefGoogle Scholar
  23. Khanna KK, Chenevix-Trench G (2004) ATM and genome maintenance: defining its role in breast cancer susceptibility. J Mammary Gland Biol Neoplasia 9:247–262. doi: 10.1023/B:JOMG.0000048772.92326.a1 CrossRefPubMedGoogle Scholar
  24. Khanna KK, Lavin MF, Jackson SP, Mulhern TD (2001) ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 8:1052–1065CrossRefPubMedGoogle Scholar
  25. Krasteva ME, Georgieva EI (2006) Germline p53 single-base changes associated with Balkan endemic nephropathy. Biochem Biophys Res Commun 342:562–567. doi: 10.1016/j.bbrc.2006.02.004 CrossRefPubMedGoogle Scholar
  26. Krasteva ME, Garanina Z, Georgieva EI (2003) Optimized polymerase chain reaction-based single-strand conformation polymorphism analysis of p53 gene applied to Bulgarian patients with invasive breast cancer. Clin Exp Med 3:173–180. doi: 10.1007/s10238-003-0022-z CrossRefPubMedGoogle Scholar
  27. Lacroix M, Toillon RA, Leclercq G (2006) p53 and breast cancer, an update. Endocr Relat Cancer 13:293–325. doi: 10.1677/erc.1.01172 CrossRefPubMedGoogle Scholar
  28. Langerød A, Zhao H, Borgan Ø, Nesland JM, Bukholm IR, Ikdahl T, Kåresen R, Børresen-Dale AL, Jeffrey SS (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9(Suppl 3):30. doi: 10.1186/bcr1675 CrossRefGoogle Scholar
  29. Li SY, Rong M, Grieu F, Iacopetta B (2006) PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res Treat 96:91–95. doi: 10.1007/s10549-005-9048-0 CrossRefPubMedGoogle Scholar
  30. Liedtke C, Cardone L, Tordai A, Yan K, Gomez HL, Figureoa LB, Hubbard RE, Valero V, Souchon EA, Symmans WF, Hortobagyi GN, Bardelli A, Pusztai L (2008) PIK3CA-activating mutations and chemotherapy sensitivity in stage II–III breast cancer. Breast Cancer Res 10(Suppl 2):27. doi: 10.1186/bcr1984 CrossRefGoogle Scholar
  31. Maillet P, Chappuis PO, Vaudan G, Dobbie Z, Muller H, Hutter P, Sappino AP (2000) A polymorphism in the ATM gene modulates the penetrance of hereditary non-polyposis colorectal cancer. Int J Cancer 88:928–931. doi: 10.1002/1097-0215(20001215)88:6<928:AID-IJC14>3.0.CO;2-P CrossRefPubMedGoogle Scholar
  32. Markoff A, Sormbroen H, Bogdanova N, Preisler-Adams S, Ganev V, Dworniczak B, Horst J (1998) Comparison of conformation-sensitive gel electrophoresis and single-strand conformation polymorphism analysis for detection of mutations in the BRCA1 gene using optimized conformation analysis protocols. Eur J Hum Genet 6:145–150CrossRefPubMedGoogle Scholar
  33. Maruyama N, Miyoshi Y, Taguchi T, Tamaki Y, Monden M, Noguchi S (2007) Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. Clin Cancer Res 15:408–414CrossRefGoogle Scholar
  34. Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bieche I, Varley J, Bignon Y, Uhrhammer N, Winqvist R, Jukkola-Vuorinen A, Niederacher D, Kato S, Ishioka C, Hainaut P, Borresen-Dale AL (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157–1167. doi: 10.1158/1078-0432.CCR-05-1029 CrossRefPubMedGoogle Scholar
  35. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165. doi: 10.1038/sj.onc.1210302 CrossRefPubMedGoogle Scholar
  36. Rahko E, Blanco G, Soini Y, Bloigu R, Jukkola A (2003) A mutant TP53 gene status is associated with a poor prognosis and anthracycline-resistance in breast cancer patients. Eur J Cancer 39:447–453CrossRefPubMedGoogle Scholar
  37. Rosen PP, Lesser ML, Arroyo CD, Cranor M, Borgen P, Norton L (1995) p53 in node-negative breast carcinoma: an immunohistochemical study of epidemiologic risk factors, histologic features, and prognosis. J Clin Oncol 13:821–830PubMedGoogle Scholar
  38. Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, Symmans WF, Pusztai L, Bloom KJ (2003) The Her-2/neu gene and protein in breast cancer: biomarker and target of therapy. Oncologist 8:307–325CrossRefPubMedGoogle Scholar
  39. Rudolph P, Olsson H, Bonatz G, Ratjen V, Bolte H, Baldetorp B, Fernö M, Parwaresch R, Alm P (1999) Correlation between p53, c-erbB-2, and topoisomerase II alpha expression, DNA ploidy, hormonal receptor status and proliferation in 356 node-negative breast carcinomas: prognostic implications. J Pathol 187:207–216. doi: 10.1002/(SICI)1096-9896(199901)187:2<207:AID-PATH223>3.0.CO;2-U CrossRefPubMedGoogle Scholar
  40. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J, Hibshoosh H, Borg A, Parsons R (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65:2554–2559CrossRefPubMedGoogle Scholar
  41. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554. doi: 10.1126/science.1096502 CrossRefPubMedGoogle Scholar
  42. Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7:561–573CrossRefPubMedGoogle Scholar
  43. Sansal I, Sellers WR (2004) The biology, clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22:2954–2963. doi: 10.1200/JCO.2004.02.141 CrossRefPubMedGoogle Scholar
  44. Sawaki M, Ito Y, Akiyama F, Tokudome N, Horii R, Mizunuma N, Takahashi S, Horikoshi N, Imai T, Nakao A, Kasumi F, Sakamoto G, Hatake K (2006) High prevalence of HER-2/neu and p53 overexpression in inflammatory breast cancer. Breast Cancer 13:172–178. doi: 10.2325/jbcs.13.172 CrossRefPubMedGoogle Scholar
  45. Singh B, Reddy PG, Goberdhan A, Walsh C, Dao S, Ngai I, Chou TC, O-charoenrat P, Levine AJ, Rao PH, Stoffel A (2002) p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev 16:984–993. doi: 10.1101/gad.973602 CrossRefPubMedGoogle Scholar
  46. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182CrossRefPubMedGoogle Scholar
  47. Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxiatelangiectasia. N Engl J Med 325:1831–1836CrossRefPubMedGoogle Scholar
  48. Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A, Byrd P, Taylor M, Easton DF (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822. doi: 10.1093/jnci/dji141 CrossRefPubMedGoogle Scholar
  49. Tommiska J, Jansen L, Kilpivaara O, Edvardsen H, Kristensen V, Tamminen A, Aittomaki K, Blomqvist C, Borresen-Dale AL, Nevanlinna H (2006) ATM variants and cancer risk in breast cancer patients from Southern Finland. BMC Cancer 6:209. doi: 10.1186/1471-2407-6-209 CrossRefPubMedGoogle Scholar
  50. Tuma RS (2005) Trastuzumab trials steal show at ASCO meeting. J Natl Cancer Inst 97:870–871. doi: 10.1093/jnci/97.12.870 CrossRefPubMedGoogle Scholar
  51. Vogt PK, Kang S, Elsliger MA, Gymnopoulos M (2007) Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci 32:342–349. doi: 10.1016/j.tibs.2007.05.005 CrossRefPubMedGoogle Scholar
  52. Whyte DB, Holbeck SL (2006) Correlation of PIK3CA mutations with gene expression and drug sensitivity in NCI-60 cell lines. Biochem Biophys Res Commun 340:469–475. doi: 10.1016/j.bbrc.2005.12.025 CrossRefPubMedGoogle Scholar
  53. Yamashita H, Nishio M, Toyama T, Sugiura H, Zhang Z, Kobayashi S, Iwase H (2004) Coexistence of HER2 over-expression and p53 protein accumulation is a strong prognostic molecular marker in breast cancer. Breast Cancer Res 6(Suppl 1):24–30. doi: 10.1186/bcr738 CrossRefGoogle Scholar
  54. Yamashita H, Nishio M, Kobayashi S, Ando A, Sugiura H, Zhang Z, Hamaguchi M, Mita K, Fujii Y, Iwase H (2005) Phosphorylation of estrogen receptor a serine167 is predictive of response to endocrine therapy and increases post relapse survival in metastatic breast cancer. Breast Cancer Res 7:753–764. doi: 10.1186/bcr1536 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stefan S. Bozhanov
    • 1
  • Svetla G. Angelova
    • 1
  • Maria E. Krasteva
    • 1
  • Tsanko L. Markov
    • 1
  • Svetlana L. Christova
    • 2
  • Ivan G. Gavrilov
    • 3
  • Elena I. Georgieva
    • 1
    Email author
  1. 1.Institute of Genetics “Akad. Doncho Kostoff”, Department of Molecular GeneticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of General and Clinical PathologyMedical UniversitySofiaBulgaria
  3. 3.National Oncological Centre HospitalSofiaBulgaria

Personalised recommendations