Journal of Cancer Research and Clinical Oncology

, Volume 136, Issue 7, pp 1111–1116

The impact of smoking and polymorphic enzymes of xenobiotic metabolism on the stage of bladder tumors: a generalized ordered logistic regression analysis

  • Sami Khedhiri
  • Nejla Stambouli
  • Slah Ouerhani
  • Kamel Rouissi
  • Raja Marrakchi
  • Amel B. Gaaied
  • M. B. Slama
Original Paper

Abstract

Cigarette smoking is the predominant risk factor for bladder cancer in males and females. The tobacco carcinogens are metabolized by various xenobiotic metabolizing enzymes such as N-acetyltransferases (NAT) and glutathione S-transferases (GST). Polymorphisms in NAT and GST genes alter the ability of these enzymes to metabolize carcinogens. In this paper, we conduct a statistical analysis based on logistic regressions to assess the impact of smoking and metabolizing enzyme genotypes on the risk to develop bladder cancer using a case–control study from Tunisia. We also use the generalized ordered logistic model to investigate whether these factors do have an impact on the progression of bladder tumors.

Keywords

Bladder cancer Smoking Xenobiotic metabolism 

References

  1. Abdel-Rahman SZ, Anwar WA, Abdel-Ala WE, Mostafa HM, Au WW (1998) GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev 22:129–138CrossRefPubMedGoogle Scholar
  2. Airoldi L, Orsi F, Magagnotti C, Coda R, Randone D, Casetta G, Peluso M, Hautefeuille A, Malaveille C, Vineis P (2002) Determinants of 4-aminobiphenyl-DNA adducts in bladder cancer biopsies. Carcinogenesis 23:861–866CrossRefPubMedGoogle Scholar
  3. Arand M, Muhlbaur R, Hengstler J, Jäger E, Fuchs J, Winkler L, Oesch F (1996) A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S transferase GSTM1 and GSTT1 polymorphisms. Ann Clin Biochem 236:384–386Google Scholar
  4. Badawi AF, Hirvonen A, Bell DA, Lang NP, Kadlubar FF (1995) Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen-DNA adducts formation in human urinary bladder. Cancer Res 55:5230–5237PubMedGoogle Scholar
  5. Blum M, Grant DM, McBride W, Heim M, Meyer UA (1990) Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 9:193–203CrossRefPubMedGoogle Scholar
  6. Brennan P, Bogillot O, Cordier S, Greiser E, Schill W, Vineis P (2000) Cigarette smoking and bladder cancer in men: a pooled analysis of 11 case-control studies. Int J Cancer 86(2):289–294CrossRefPubMedGoogle Scholar
  7. Brockmöller J, Cascorbi I, Kerb R, Roots I (1996) Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 56:3915–3925PubMedGoogle Scholar
  8. Ford JG, Li Y, O’Sullivan MM, Demopoulos R, Garte S, Taioli E, Branott-Rauf PW (2000) Glutathione S-transferase M1 polymorphism and lung cancer risk in African-Americans. Carcinogenesis 21:1971–1975CrossRefPubMedGoogle Scholar
  9. Fu V (1998) Estimating generalized ordered logit models. Stata Tech Bull 44:27–30Google Scholar
  10. Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL, Baranova H, Bathum L, Benhamou S, Boffetta P (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248PubMedGoogle Scholar
  11. Hao GY, Zhang WD, Chen YH, Zhang DX, Zhang YH (2004) Relationship between genetic polymorphism of NAT2 and susceptibility to urinary bladder cancer. Zhonghua Zhong Liu Za Zhi 26:283–286PubMedGoogle Scholar
  12. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88CrossRefPubMedGoogle Scholar
  13. Hein DW (2006) N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25:1649–1658CrossRefPubMedGoogle Scholar
  14. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, Devanaboyina US, Nangju NA, Feng Y (2000) Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 9:29–42PubMedGoogle Scholar
  15. Hengstler JG, Kett A, Arand M, Oesch-Bartlomowicz B, Oesch F, Pilch H, Tanner B (1998) Glutathione S-transferase T1 and M1 gene defects in ovarian carcinoma. Cancer Lett 130:43–48CrossRefPubMedGoogle Scholar
  16. Hsieh FI, Pu YS, Chern HD, Hsu LI, Chiou HY, Chen CJ (1999) Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer. Br J Cancer 81(3):537–541CrossRefPubMedGoogle Scholar
  17. Karagas MR, Park S, Warren A, Hamilton J, Nelson HH, Mott LA, Kelsey KT (2005) Gender, smoking, glutathione-S-transferase variants and bladder cancer incidence: a population-based study. Cancer Lett 219:63–69CrossRefPubMedGoogle Scholar
  18. Katoh T, Inatomi H, Kim H, Yang M, Matsumoto M, Kawatomo T (1998) Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett 132:147–152CrossRefPubMedGoogle Scholar
  19. Kloth MT, Gee RL, Messing EM, Swaminathan S (1994) Expression of N acetyltransferase (NAT) in cultured human uroepithelial cells. Carcinogenesis 15:2781–2787CrossRefPubMedGoogle Scholar
  20. Lin HJ, Han CY, Bernstein DA, Hsiao W, Lin BK, Hardy S (1994) Ethnic distribution of the glutathione transferase Mu 1–1 (GSTM1) null genotype in 1473 individuals and application to bladder cancer susceptibility. Carcinogenesis 15:1077–1081CrossRefPubMedGoogle Scholar
  21. Long JS, Freese J (2006) Regression models for categorical dependent variables using Stata, 2nd edn. Stata Press, College StationGoogle Scholar
  22. Ouerhani S, Tebourski F, Ben Slama MR, Marrakchi R, Rabeh M, Ben Hessine L, Ayed M, Ben Ammar El Gaaied A (2006) The role of glutathione transferases M1 and T1 in individual susceptibility to bladder cancer in a Tunisian population. Ann Hum Biol 33:529–535CrossRefPubMedGoogle Scholar
  23. Ouerhani S, Rouissi K, Marrakchi R, Ben Slama MR, Sfaxi M, Ayed M, Chebil M, El-Gaaied AB (2009) Do smoking and polymorphisms in xenobiotic metabolizing enzymes affect the histological stage and grade of bladder tumors? Bull Cancer 96(5):23–29Google Scholar
  24. Parkin DM, Steinitz R, Khlat M, Kaldor J, Katz L, Young J (1990) Cancer in Jewish migrants to Israel. Int J Cancer 45:614–621CrossRefPubMedGoogle Scholar
  25. Parkin DM, Whelan S, Ferlay J, Leppo L, Thomas DB (2002) Cancer incidence in five continents. IARC Publication, LyonGoogle Scholar
  26. Probst-Hensch NM, Bell DA, Watson MA, Skipper PL, Tannenbaum SR, Chan KK, Ross RK, Yu MC (2000) N-acetyltransferase 2 phenotype but not NAT1*10 genotype affects aminobiphenyl-hemoglobin adduct levels. Cancer Epidemiol Biomarkers Prev 9:619–623PubMedGoogle Scholar
  27. Rebbeck TR, Walker AH, Jaffe JM, White DL, Wein AJ, Malcowiez SB (1999) Glutathione S-transferases μ (GSTM1) and θ (GSTT1) genotypes in the etiology of prostate cancer. Cancer Epidemiol Biomarkers Prev 8:283–287PubMedGoogle Scholar
  28. Risch A, Wallace DMA, Bathers S, Sim E (1995) Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum Mol Genet 4:231–236CrossRefPubMedGoogle Scholar
  29. Salagovic J, Kalina I, Stubna J, Habalova V, Hrivnak M, Valansky L, Kohut A, Biros E (1998) Genetic polymorphism of glutathione S-transferase M1 and T1 as a risk factor in lung and bladder cancers. Neoplasma 45:312–317PubMedGoogle Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  31. Sellami A, Jlidi R, Hsaïri M, Achour N (2000) Registre du cancer du sud Tunisie. Habib Bourguiba Hospital Registry 2:32–35Google Scholar
  32. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16CrossRefPubMedGoogle Scholar
  33. Silverman DT, Rothman N, Devesa SS, Syrigos KN, Skinner DG (1999) Bladder cancer: biology, diagnosis, and management. Oxford University Press, New York, pp 11–55Google Scholar
  34. Tompson IM, Peek M, Rodriguez FR (1987) The impact of cigarette smoking on stage, grade and number of recurrences of transitional cell carcinoma of the bladder. J Urol 96(5):23–29Google Scholar
  35. Vineis P, Bartsch H, Caporaso N, Harrington AM, Kadlubar FF, Landi MT, Malaveille C, Shields PG, Skipper P, Talaska G (1994) Genetically based N-acetyltransferase metabolic polymorphism and low-level environmental exposure to carcinogens. Nature 369:154–156CrossRefPubMedGoogle Scholar
  36. Williams R (2006) Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata J 6(1):58–82Google Scholar
  37. Yu MC, Skipper PL, Taghizadeh K, Tannenbaum SR, Chan KK, Henderson BE, Ross RK (1994) Acetylator phenotype, aminobiphenyl-hemoglobin adduct levels, and bladder cancer risk in white, black, and Asian men in Los Angeles, California. J Natl Cancer Inst 86:712–716CrossRefPubMedGoogle Scholar
  38. Zeegers MP, Kellen E, Buntinx F, van den Brandt PA (2004) The association between smoking, beverage consumption, diet and bladder cancer: a systematic literature review. World J Urol 21(6):392–401CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sami Khedhiri
    • 1
  • Nejla Stambouli
    • 2
  • Slah Ouerhani
    • 3
  • Kamel Rouissi
    • 2
  • Raja Marrakchi
    • 2
  • Amel B. Gaaied
    • 2
  • M. B. Slama
    • 4
  1. 1.Department of Mathematics and StatisticsUniversity of Prince Edward IslandCharlottetownCanada
  2. 2.Faculty of ScienceUniversity of TunisTunisTunisia
  3. 3.Institut PasteurTunisTunisia
  4. 4.Charles Nicole HospitalTunisTunisia

Personalised recommendations