Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 136, Issue 2, pp 203–210 | Cite as

Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients

  • Sondes Karray-Chouayekh
  • Fatma Trifa
  • Abdelmajid Khabir
  • Nouredine Boujelbane
  • Tahia Sellami-Boudawara
  • Jamel Daoud
  • Mounir Frikha
  • Rachid Jlidi
  • Ali Gargouri
  • Raja Mokdad-Gargouri
Original Paper

Abstract

Introduction

Epigenetic gene silencing is one of the major causes of inactivation of tumor-suppressor genes in many human cancers.

Materials and methods

The aim of the present study was to determine the methylation status of the promoter region CpG islands of four cancer-related genes RASSF1A, RARβ2, CDH1, and p16 INK4a in 78 breast cancer specimens and to evaluate whether the methylation status is associated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) together with the major clinico-pathological parameters.

Results

We showed that the methylation frequencies ranged from 19.6% (p16 INK4a ) to 87% (RASSF1A) in primary breast tumors of Tunisian patients. Aberrant methylation of RARβ2 was observed in 66.6% of cases and associated with age at diagnosis (P = 0.043), while CDH1 was methylated in 47.4% of tumors and was correlated with tumor size (P = 0.013). RASSF1A presented the highest percentage of methylation (87%) and was strongly associated with poor survival (P = 0.014), with age (P = 0.048), and tumor stage (P = 0.033). Loss of ER and PR was strongly associated with GIII tumors (P = 0.000 and 0.037 respectively) while HER2/neu was associated with lymph node involvement (P = 0.026) and 5-year survival rate (P = 0.028).

Conclusions

Our preliminary findings suggested that aberrant methylation of RASSF1A and RARβ2 occurs frequently in Tunisian breast cancer patients compared with others. Furthermore, RASSF1A hypermethylation could be used as a potential marker of poor prognosis.

Keywords

Promoter methylation Methylation-specific PCR Tumor suppressor genes Breast cancer Disease-free survival 

Notes

Acknowledgment

This work was supported by a grant of the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Tunisien.

References

  1. Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J et al (2001) Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20:1509–1518. doi: 10.1038/sj.onc.1204175 CrossRefPubMedGoogle Scholar
  2. Asch BB, Barcellos-Hoff MH (2001) Epigenetics and breast cancer. J Mammary Gland Biol Neoplasia 6:151–152. doi: 10.1023/A:1011306222533 CrossRefPubMedGoogle Scholar
  3. Bae YK, Brown A, Garrett E, Bornman D, Fackler MJ, Sukumar S et al (2004) Hypermethylation in histologically distinct classes of breast cancer. Clin Cancer Res 10:5998–6005. doi: 10.1158/1078-0432.CCR-04-0667 CrossRefPubMedGoogle Scholar
  4. Bagadi SAR, Prasad CP, Kaur J, Srivastava A, Prashad R, Gupta SD et al (2008) Clinical significance of promoter hypermethylation of RASSF1A, RARβ2, BRCA1 and HOXA5 in breast cancers of Indian patients. Life Sci 82:1288–1292. doi: 10.1016/j.lfs.2008.04.020 CrossRefPubMedGoogle Scholar
  5. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction. Nat Rev Cancer 6:107–116. doi: 10.1038/nrc1799 CrossRefPubMedGoogle Scholar
  6. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21. doi: 10.1101/gad.947102 CrossRefPubMedGoogle Scholar
  7. Brock MV, Gou MG, Akiyama Y, Muller A, Wu TT, Montgomery E et al (2003) Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 9:2912–2919PubMedGoogle Scholar
  8. Byun DS, Lee MG, Chae KS, Ryu BG, Chi SG (2001) Frequent epigenetic inactivation of RASSF1A by aberrant promoter hypermethylation in human gastric adenocarcinoma. Cancer Res 61:7034–7038PubMedGoogle Scholar
  9. Caldeira JR, Prando EC, Quevedo FC, Neto FA, Rainho CA, Rogatto SR (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:1–9. doi: 10.1186/1471-2407-6-48 CrossRefGoogle Scholar
  10. Dammann R, Yang G, Pfeifer GP (2001) Hypermethylation of the CpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res 61:3105–3109PubMedGoogle Scholar
  11. Dreijerink K, Braga E, Kuzmin I, Geil L, Duh FM, Angeloni D et al (2001) The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc Natl Acad Sci USA 98:7504–7509. doi: 10.1073/pnas.131216298 CrossRefPubMedGoogle Scholar
  12. Duffy MJ (2006) Estrogen receptors: role in breast cancer. Crit Rev Clin Lab Sci 43:325–347. doi: 10.1080/10408360600739218 CrossRefPubMedGoogle Scholar
  13. Elston CW, Ellis IO, Goulging H, Pindre SE (1998) Role of pathology in the prognosis and management of breast cancer. In: Elston CW, Ellis IO (eds) Systemic pathology, vol 13, 3rd edn. Churchill Livingstone, London, pp 385–433Google Scholar
  14. Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440. doi: 10.1038/sj.onc.1205600 CrossRefPubMedGoogle Scholar
  15. Esteller M, Corn PG, Baylin SB, Herman JGA (2001) Gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMedGoogle Scholar
  16. Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K et al (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer 107:970–975. doi: 10.1002/ijc.11508 CrossRefPubMedGoogle Scholar
  17. Fendri A, Masmoudi A, Khabir A, Sellami-Boudawara T, Daoud J, Frikha M, Ghorbel A, Gargouri A, Mokdad-Gargouri R (2008) Inactivation of RASSF1A, RARβ2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther [Epub ahead of print]Google Scholar
  18. Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X et al (2007) Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 9:1–13. doi: 10.1186/bcr1762 CrossRefGoogle Scholar
  19. Feuer EJ, Wun LM, Boring CC, Flanders WD, Timmel MJ, Tong T (1993) The lifetime risk of developing breast cancer. J Natl Cancer Inst 85:892–897. doi: 10.1093/jnci/85.11.892 CrossRefPubMedGoogle Scholar
  20. Francis G, Beadle G, Thomas S, Mengersen K, Stein S (2006) Evaluation of estrogen and progesterone receptor status in HER-2 positive breast carcinomas and correlation with outcome. Pathology 38:391–398. doi: 10.1080/00313020600922488 CrossRefPubMedGoogle Scholar
  21. Hachana M, Trimeche M, Ziadi S, Amara K, Korbi S (2009) Evidence for a role of the Simian Virus 40 in human breast carcinoma. Breast Cancer Res Treat 113:43–58. doi: 10.1007/s10549-008-9901-z CrossRefPubMedGoogle Scholar
  22. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530PubMedGoogle Scholar
  23. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826. doi: 10.1073/pnas.93.18.9821 CrossRefPubMedGoogle Scholar
  24. Issa JP (2003) Methylation and prognosis: of molecular clocks and hypermethylator phenotypes. Clin Cancer Res 9:2879–2881PubMedGoogle Scholar
  25. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428. doi: 10.1038/nrg962 CrossRefPubMedGoogle Scholar
  26. Lee MG, Kim HY, Byun DS, Lee SJ, Lee CH, Kim JI et al (2001) Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res 61:6688–6692PubMedGoogle Scholar
  27. Lee JS, Fackler LPK, Argani MJ, Zhang P, Garrett-Mayer Z, Sukumar ES (2007) A comparative study of Korean with Caucasian breast cancer reveals frequency of methylation in multiple genes correlates with breast cancer in young, ER, PR-negative breast cancer in Korean women. Cancer Biol Ther 6:1114–1120. doi: 10.1158/1535-7163.MCT-07-0002 CrossRefPubMedGoogle Scholar
  28. Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B, Kreipe H (2002) Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol 160:605–612PubMedGoogle Scholar
  29. Li S, Rong M, Iacopetta B (2006) DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett 237:272–280. doi: 10.1016/j.canlet.2005.06.011 CrossRefPubMedGoogle Scholar
  30. Mehrotra J, Ganpat MM, Kanaan Y, Fackler MJ, McVeigh M, Lahti-Domenici J et al (2004) Estrogen receptor/progesterone receptor negative breast cancers of young African-American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin Cancer Res 10:2052–2057. doi: 10.1158/1078-0432.CCR-03-0514 CrossRefPubMedGoogle Scholar
  31. Mourali N, Muenz LR, Tabbane F, Belhassen S, Bahi J, Levine PH (1980) Epidemiologic features of rapidly progressing breast cancer in Tunisia. Cancer 46:2741–2746. doi: 10.1002/1097-0142(19801215)46:12<2741::AID-CNCR2820461234>3.0.CO;2-W CrossRefPubMedGoogle Scholar
  32. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE et al (2000) Aberrant methylation of the estrogen receptor and E-cadherin CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348PubMedGoogle Scholar
  33. Nielsen NH, Roos G, Emdin SO, Landberg G (2001) Methylation of the p16INK4a tumour suppressor gene: CpG island in breast cancer. Cancer Lett 163:59–69. doi: 10.1016/S0304-3835(00)00674-1 CrossRefPubMedGoogle Scholar
  34. Parkin DM, Ferlay J, Hamdi-Cherif M, Sitas F, Thomas J, Wabinga H et al (2003) Breast cancer in Africa: epidemiology and prevention. IARC Scientific Publication No. 153. IARC, Lyon, pp 262–267Google Scholar
  35. Parrella P, Poeta ML, Gallo AP, Prencipe M, Scintu M, Apicella A et al (2004) Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumour. Clin Cancer Res 10:5349–5354. doi: 10.1158/1078-0432.CCR-04-0555 CrossRefPubMedGoogle Scholar
  36. Rusiecki JA, Holford TR, Zahm SH, Zheng T (2005) Breast cancer risk factors according to joint estrogen receptor and progesterone receptor status. Cancer Detect Prev 29:419–426. doi: 10.1016/j.cdp.2005.07.004 CrossRefPubMedGoogle Scholar
  37. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  38. Sharma G, Mirza S, Prasad C, Srivastava A, Gupta SD, Ralhan R (2007) Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci 80:1873–1881. doi: 10.1016/j.lfs.2007.02.026 CrossRefPubMedGoogle Scholar
  39. Shukla S, Mirza S, Sharma G, Parshad R, Gupta SD, Ralhan R (2006) Detection of RASSF1A and RARβ: hypermethylation in serum DNA from breast cancer patients. Epigenetics 1:88–93PubMedCrossRefGoogle Scholar
  40. Sobin LH, Wittekind CH (eds) (1997) International Union Against Cancer, TNM classification of malignant tumours, 5th edn edn. Wiley-Liss, New York, pp 25–32Google Scholar
  41. Sunami E, Shinozaki M, Sim MS, Nguyen SL, Vu AT, Giuliano AE, Hoon DSB (2008) Estrogen receptor and HER2/neu status affect epigenetic differences of tumor-related genes in primary breast tumors. Breast Cancer Res [Epub ahead of print]Google Scholar
  42. Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68:1187–1197. doi: 10.1016/j.bcp.2004.04.030 CrossRefPubMedGoogle Scholar
  43. Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21:5462–5482. doi: 10.1038/sj.onc.1205606 CrossRefPubMedGoogle Scholar
  44. Widschwendter M, Berger J, Hermann M, Muller HM, Amberger A, Zeschnigk M et al (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 29:826–832. doi: 10.1093/jnci/92.10.826 CrossRefGoogle Scholar
  45. Yang Q, Mori I, Shan L, Nakamura M, Nakamura Y, Utsunomiya H et al (2001) Biallelic inactivation of retinoic acid receptor b2 gene by epigenetic change in breast cancer. Am J Pathol 158:299–303PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sondes Karray-Chouayekh
    • 1
  • Fatma Trifa
    • 1
  • Abdelmajid Khabir
    • 2
  • Nouredine Boujelbane
    • 2
  • Tahia Sellami-Boudawara
    • 2
  • Jamel Daoud
    • 2
  • Mounir Frikha
    • 2
  • Rachid Jlidi
    • 3
  • Ali Gargouri
    • 1
  • Raja Mokdad-Gargouri
    • 1
  1. 1.Unité de Recherche Génétique du Cancer et Production de Protéines ThérapeutiquesCentre de Biotechnologie de SfaxSfaxTunisia
  2. 2.Centre Hospitalo-Universitaire Habib BourguibaSfaxTunisia
  3. 3.Laboratoire privé d’Anatomo-pathologieSfaxTunisia

Personalised recommendations