Journal of Cancer Research and Clinical Oncology

, Volume 135, Issue 11, pp 1583–1592 | Cite as

Protein expression following γ-irradiation relevant to growth arrest and apoptosis in colon cancer cells

  • Daniella Pfeifer
  • Åsa Wallin
  • Birgitta Holmlund
  • Xiao-Feng Sun
Original Paper



To study expression of proteins previously connected to radiotherapy response in rectal cancer patients, namely, p53, TAp73, ΔNp73, survivin and PRL-3, after irradiation in colon cancer cells to gain standing ground for further studies of pathways and mechanisms.


Three colon cancer cell lines (KM12C, KM12SM and KM12L4a) with one origin were radiated with γ-radiation. Radiosensitivity was determined with cell cycle, survival fraction at 5 Gy (SF5) and apoptosis analysis and protein expression by Western blot.


Following irradiation, KM12C showed no cell cycle arrest, and low SF5 and apoptosis, whilst KM12L4a showed high SF5 and apoptosis. KM12SM had moderate radiosensitivity. After irradiation, the anti-apoptotic ΔNp73 and mitosis-factor PRL-3 increased in KM12C and the radioresistance factor survivin increased in KM12L4a.


The cell lines seem to have evolved different protein patterns regarding the studied proteins and partly therefore developed different resistance mechanisms, less apoptosis for KM12C and continued proliferation for KM12L4a, after γ-irradiation.


Colon cancer cells p73 Survivin PRL-3 γ-Irradiation Apoptosis 



The authors are grateful to Dan Josefsson, Sara Olsson and Erik Angland (Department of Radiophysics, University Hospital, Linköping, Sweden) for helping us with the radiation of the cells. The authors are also thankful to Karin Roberg (Division of Otorhinolaryngology, University Hospital, Linköping, Sweden) for sharing all her knowledge on cell culture and apoptosis. The cell lines used in the study was kindly provided by Prof. I. J. Fidler (M. D. Anderson Cancer Center, Houston, TX). The study was supported by grants from the Swedish Cancer Foundation, and the Health Research Council in the South-East of Sweden.

Conflict of interest statement

We declare that we have no conflict of interest.


  1. Adell G, Sun XF, Stal O et al (1999) p53 status: an indicator for the effect of preoperative radiotherapy of rectal cancer. Radiother Oncol 51:169–174. doi: 10.1016/S0167-8140(99)00041-9 PubMedCrossRefGoogle Scholar
  2. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8:61–70. doi: 10.1038/nrc2293 PubMedCrossRefGoogle Scholar
  3. Bensaad K, Le Bras M, Unsal K et al (2003) Change of conformation of the DNA-binding domain of p53 is the only key element for binding of and interference with p73. J Biol Chem 278:10546–10555. doi: 10.1074/jbc.M208233200 PubMedCrossRefGoogle Scholar
  4. Castedo M, Coquelle A, Vivet S et al (2006) Apoptosis regulation in tetraploid cancer cells. EMBO J 25:2584–2595. doi: 10.1038/sj.emboj.7601127 PubMedCrossRefGoogle Scholar
  5. Coates PJ (2006) Regulating p73 isoforms in human tumours. J Pathol 210:385–389. doi: 10.1002/path.2080 PubMedCrossRefGoogle Scholar
  6. Concin N, Hofstetter G, Berger A et al (2005) Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53–p73 cross-talk in vivo. Clin Cancer Res 11:8372–8383. doi: 10.1158/1078-0432.CCR-05-0899 PubMedCrossRefGoogle Scholar
  7. Cummings J, Ward TH, Lacasse E et al (2005) Validation of pharmacodynamic assays to evaluate the clinical efficacy of an antisense compound (AEG 35156) targeted to the X-linked inhibitor of apoptosis protein XIAP. Br J Cancer 92:532–538PubMedGoogle Scholar
  8. Davis PK, Dowdy SF (2001) p73. Int J Biochem Cell Biol 33:935–939. doi: 10.1016/S1357-2725(01)00073-5 PubMedCrossRefGoogle Scholar
  9. Dohi T, Beltrami E, Wall NR et al (2004) Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest 114:1117–1127PubMedGoogle Scholar
  10. Dominguez G, Garcia JM, Pena C et al (2006) DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol 24:805–815. doi: 10.1200/JCO.2005.02.2350 PubMedCrossRefGoogle Scholar
  11. Fontemaggi G, Kela I, Amariglio N et al (2002) Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem 277:43359–43368. doi: 10.1074/jbc.M205573200 PubMedCrossRefGoogle Scholar
  12. Gaiddon C, Lokshin M, Ahn J et al (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21:1874–1887. doi: 10.1128/MCB.21.5.1874-1887.2001 PubMedCrossRefGoogle Scholar
  13. Grob TJ, Novak U, Maisse C et al (2001) Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8:1213–1223. doi: 10.1038/sj.cdd.4400962 PubMedCrossRefGoogle Scholar
  14. Hoffman WH, Biade S, Zilfou JT et al (2002) Transcriptional repression of the anti-apoptotic survivin gene by wild-type p53. J Biol Chem 277:3247–3257. doi: 10.1074/jbc.M106643200 PubMedCrossRefGoogle Scholar
  15. Ianzini F, Bertoldo A, Kosmacek EA et al (2006) Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells. Cancer Cell Int 6:11. doi: 10.1186/1475-2867-6-11 PubMedCrossRefGoogle Scholar
  16. Kami K, Doi R, Koizumi M et al (2005) Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery 138:299–305. doi: 10.1016/j.surg.2005.05.009 PubMedCrossRefGoogle Scholar
  17. Kartasheva NN, Contente A, Lenz-Stoppler C et al (2002) p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene 21:4715–4727. doi: 10.1038/sj.onc.1205584 PubMedCrossRefGoogle Scholar
  18. Kato H, Semba S, Miskad UA et al (2004) High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res 10:7318–7328. doi: 10.1158/1078-0432.CCR-04-0485 PubMedCrossRefGoogle Scholar
  19. Knutsen A, Adell G, Sun XF (2004) Survivin expression is an independent prognostic factor in rectal cancer patients with and without preoperative radiotherapy. Int J Radiat Oncol Biol Phys 60:149–155. doi: 10.1016/j.ijrobp.2004.02.007 PubMedGoogle Scholar
  20. Li Y, Prives C (2007) Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26:2220–2225. doi: 10.1038/sj.onc.1210311 PubMedCrossRefGoogle Scholar
  21. Liu SS, Leung RC, Chan KY et al (2004) p73 expression is associated with the cellular radiosensitivity in cervical cancer after radiotherapy. Clin Cancer Res 10:3309–3316. doi: 10.1158/1078-0432.CCR-03-0119 PubMedCrossRefGoogle Scholar
  22. Liu SS, Chan KY, Cheung AN et al (2006) Expression of deltaNp73 and TAp73alpha independently associated with radiosensitivities and prognoses in cervical squamous cell carcinoma. Clin Cancer Res 12:3922–3927. doi: 10.1158/1078-0432.CCR-05-2573 PubMedCrossRefGoogle Scholar
  23. Marabese M, Vikhanskaya F, Broggini M (2007) p73: a chiaroscuro gene in cancer. Eur J Cancer 43:1361–1372. doi: 10.1016/j.ejca.2007.01.042 PubMedCrossRefGoogle Scholar
  24. Mirza A, Mcguirk M, Hockenberry TN et al (2002) Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21:2613–2622. doi: 10.1038/sj.onc.1205353 PubMedCrossRefGoogle Scholar
  25. Morikawa K, Walker SM, Jessup JM et al (1988a) In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res 48:1943–1948PubMedGoogle Scholar
  26. Morikawa K, Walker SM, Nakajima M et al (1988b) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48:6863–6871PubMedGoogle Scholar
  27. Nagtegaal ID, Gaspar CG, Peltenburg LT et al (2005) Radiation induces different changes in expression profiles of normal rectal tissue compared with rectal carcinoma. Virchows Arch 446:127–135. doi: 10.1007/s00428-004-1160-8 PubMedCrossRefGoogle Scholar
  28. Okamoto T, Izumi H, Imamura T et al (2000) Direct interaction of p53 with the Y-box binding protein, YB-1: a mechanism for regulation of human gene expression. Oncogene 19:6194–6202. doi: 10.1038/sj.onc.1204029 PubMedCrossRefGoogle Scholar
  29. Pawlik TM, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59:928–942. doi: 10.1016/j.ijrobp.2004.03.005 PubMedCrossRefGoogle Scholar
  30. Pennati M, Folini M, Zaffaroni N (2007) Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 28:1133–1139. doi: 10.1093/carcin/bgm047 PubMedCrossRefGoogle Scholar
  31. Pfeifer D, Gao J, Adell G et al (2006) Expression of the p73 protein in rectal cancers with or without preoperative radiotherapy. Int J Radiat Oncol Biol Phys 65:1143–1148. doi: 10.1016/j.ijrobp.2006.02.028 PubMedGoogle Scholar
  32. Rodel F, Hoffmann J, Distel L et al (2005) Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 65:4881–4887. doi: 10.1158/0008-5472.CAN-04-3028 PubMedCrossRefGoogle Scholar
  33. Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303–313. doi: 10.1054/drup.2001.0213 PubMedCrossRefGoogle Scholar
  34. Rouleau C, Roy A, St Martin T et al (2006) Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Mol Cancer Ther 5:219–229. doi: 10.1158/1535-7163.MCT-05-0289 PubMedCrossRefGoogle Scholar
  35. Salomoni P, Dyer M (2005) ΔNp73: the enemy within. Cell Death Differ 12:2. doi: 10.1038/sj.cdd.4401802 CrossRefGoogle Scholar
  36. Stephens BJ, Han H, Gokhale V et al (2005) PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther 4:1653–1661. doi: 10.1158/1535-7163.MCT-05-0248 PubMedCrossRefGoogle Scholar
  37. Suzuki Y, Oka K, Yoshida D et al (2007) Correlation between survivin expression and locoregional control in cervical squamous cell carcinomas treated with radiation therapy. Gynecol Oncol 104:642–646. doi: 10.1016/j.ygyno.2006.10.005 PubMedCrossRefGoogle Scholar
  38. Vindelov LL, Christensen IJ, Nissen NI (1983) Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry 3:328–331. doi: 10.1002/cyto.990030504 PubMedCrossRefGoogle Scholar
  39. Wallin AR, Svanvik J, Adell G et al (2006) Expression of PRL proteins at invasive margin of rectal cancers in relation to preoperative radiotherapy. Int J Radiat Oncol Biol Phys 65:452–458. doi: 10.1016/j.ijrobp.2005.12.043 PubMedGoogle Scholar
  40. Wang Z, Fukuda S, Pelus LM (2004) Survivin regulates the p53 tumor suppressor gene family. Oncogene 23:8146–8153. doi: 10.1038/sj.onc.1207992 PubMedCrossRefGoogle Scholar
  41. Wang H, Quah SY, Dong JM et al (2007) PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial–mesenchymal transition. Cancer Res 67:2922–2926. doi: 10.1158/0008-5472.CAN-06-3598 PubMedCrossRefGoogle Scholar
  42. Wolpin BM, Meyerhardt JA, Mamon HJ et al (2007) Adjuvant treatment of colorectal cancer. CA Cancer J Clin 57:168–185. doi: 10.3322/canjclin.57.3.168 PubMedCrossRefGoogle Scholar
  43. Zaffaroni N, Pennati M, Daidone MG (2005) Survivin as a target for new anticancer interventions. J Cell Mol Med 9:360–372. doi: 10.1111/j.1582-4934.2005.tb00361.x PubMedCrossRefGoogle Scholar
  44. Zeng Q, Dong JM, Guo K et al (2003) PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res 63:2716–2722PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Daniella Pfeifer
    • 1
  • Åsa Wallin
    • 1
  • Birgitta Holmlund
    • 1
  • Xiao-Feng Sun
    • 1
  1. 1.Division of Oncology, Department of Clinical and Experimental Medicine, University HospitalLinköping UniversityLinköpingSweden

Personalised recommendations