Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 135, Issue 9, pp 1177–1184 | Cite as

Human cervical carcinoma xenograft models for studies of the physiological microenvironment of tumors

  • Christine Ellingsen
  • Ingrid Natvig
  • Jon-Vidar Gaustad
  • Kristine Gulliksrud
  • Tormod A. M. Egeland
  • Einar K. RofstadEmail author
Original Paper

Abstract

Objective

To establish and characterize experimental tumor models of advanced squamous cell carcinoma of the uterine cervix.

Methods

Permanent cell lines (CK-160 and TS-415) were established from pelvic lymph node metastases of two cervical carcinoma patients. Xenografted tumors were initiated by inoculating 5 × 105 cells into the gastrocnemius muscle of BALB/c nu/nu mice. The tumors were characterized with respect to histological appearance, fraction of necrotic tissue (NF), pimonidazole hypoxic fraction (HFPim), interstitial fluid pressure (IFP), extracellular pH (pHe), metastatic propensity, and radiation sensitivity.

Results

The xenografted tumors reflected the donor patients’ tumors in histological appearance, metastatic propensity, and radiation sensitivity and showed significant intertumor heterogeneity in growth rate, NF, HFPim, IFP, and pHe.

Conclusions

CK-160 and TS-415 xenografts possess properties making them relevant models for studies of the physiological microenvironment of cervical carcinoma and its influence on metastatic dissemination and response to treatment.

Keywords

Cervical carcinoma Metastasis Radiosensitivity Hypoxia Extracellular pH Interstitial fluid pressure 

Notes

Acknowledgment

This work was supported by the Norwegian Cancer Society.

References

  1. Averette HE, Nguyen HN, Donato DM et al (1993) Radical hysterectomy for invasive cervical cancer: a 25-year prospective experience with the Miami technique. Cancer 71:1422–1437PubMedGoogle Scholar
  2. Fyles A, Milosevic M, Wong R et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156. doi: 10.1016/S0167-8140(98)00044-9 PubMedCrossRefGoogle Scholar
  3. Fyles A, Milosevic M, Pintilie M et al (2006) Long-term performance of interstitial fluid pressure and hypoxia as prognostic factors in cervix cancer. Radiother Oncol 80:132–137. doi: 10.1016/j.radonc.2006.07.014 PubMedCrossRefGoogle Scholar
  4. Gulliksrud K, Brurberg K, Rofstad EK (2008) Dynamic contrast-enhanced magnetic resonance imaging of tumor interstitial fluid pressure. Radiother Oncol [Epub ahead of print]. doi: 10.1016/j.radonc.2008.08.015
  5. Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, chapter 6. Williams & Wilkins, PhiladelphiaGoogle Scholar
  6. Höckel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 51:6098–6102PubMedGoogle Scholar
  7. Höckel M, Schlenger K, Aral B, Mitze M, Schäffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515PubMedGoogle Scholar
  8. Kosary CL (1994) FIGO stage, histology, histologic grade, age and race as prognostic factors in determining survival for cancers of the female gynecological system: an analysis of 1973–87 SEER cases of cancers of the endometrium, cervix, ovary, vulva, and vagina. Semin Surg Oncol 10:31–46. doi: 10.1002/ssu.2980100107 PubMedCrossRefGoogle Scholar
  9. Milosevic M, Fyles A, Hedley D et al (2001) Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61:6400–6405PubMedGoogle Scholar
  10. Milosevic M, Fyles A, Hedley D, Hill R (2004) The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol 14:249–258. doi: 10.1016/j.semradonc.2004.04.006 PubMedCrossRefGoogle Scholar
  11. Ozerdem U, Hargens AR (2005) A simple method for measuring interstitial fluid pressure in cancer tissues. Microvasc Res 70:116–120. doi: 10.1016/j.mvr.2005.07.003 PubMedCrossRefGoogle Scholar
  12. Pitson G, Fyles A, Milosevic M, Wylie J, Pintilie M, Hill R (2001) Tumor size and oxygenation are independent predictors of nodal disease in patients with cervix cancer. Int J Radiat Oncol Biol Phys 51:699–703. doi: 10.1016/S0360-3016(01)01662-5 PubMedGoogle Scholar
  13. Rofstad EK (1991) Influence of cellular radiation sensitivity on local tumor control of human melanoma xenografts given fractionated radiation treatment. Cancer Res 51:4609–4612PubMedGoogle Scholar
  14. Rofstad EK (1994) Orthotopic human melanoma xenograft model systems for studies of tumour angiogenesis, pathophysiology, treatment sensitivity and metastatic pattern. Br J Cancer 70:804–812PubMedGoogle Scholar
  15. Rofstad EK (2000) Microenvironment-induced cancer metastasis. Int J Radiat Biol 76:589–605. doi: 10.1080/095530000138259 PubMedCrossRefGoogle Scholar
  16. Rofstad EK, Lyng H (1996) Xenograft model systems for human melanoma. Mol Med Today 2:394–403. doi: 10.1016/S1357-4310(96)10035-6 PubMedCrossRefGoogle Scholar
  17. Rofstad EK, Måseide K (1999) Radiobiological and immunohistochemical assessment of hypoxia in human melanoma xenografts: acute and chronic hypoxia in individual tumours. Int J Radiat Biol 75:1377–1393. doi: 10.1080/095530099139250 PubMedCrossRefGoogle Scholar
  18. Schwickert G, Walenta S, Sundfør K, Rofstad EK, Mueller-Klieser W (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55:4757–4759PubMedGoogle Scholar
  19. Subarsky P, Hill RP (2003) The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20:237–250. doi: 10.1023/A:1022939318102 PubMedCrossRefGoogle Scholar
  20. Sundfør K, Lyng H, Rofstad EK (1998) Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer 78:822–827PubMedGoogle Scholar
  21. Sundfør K, Lyng H, Tropé CG, Rofstad EK (2000) Treatment outcome in advanced squamous cell carcinoma of the uterine cervix: relationships to pretreatment tumor oxygenation and vascularization. Radiother Oncol 54:101–107. doi: 10.1016/S0167-8140(99)00175-9 PubMedCrossRefGoogle Scholar
  22. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465PubMedGoogle Scholar
  23. Walenta S, Wetterling M, Lehrke M et al (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Christine Ellingsen
    • 1
  • Ingrid Natvig
    • 1
  • Jon-Vidar Gaustad
    • 1
  • Kristine Gulliksrud
    • 1
  • Tormod A. M. Egeland
    • 1
  • Einar K. Rofstad
    • 1
    Email author
  1. 1.Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer ResearchNorwegian Radium HospitalOsloNorway

Personalised recommendations