Frequent inactivation of RUNX3 by promoter hypermethylation and protein mislocalization in oral squamous cell carcinomas

  • Feng Gao
  • Canhua Huang
  • Mei Lin
  • Zhi Wang
  • Jun Shen
  • Haiyuan Zhang
  • Lu Jiang
  • Qianming Chen
Original Paper



RUNX3 is a functionally important component in transforming growth factor-beta (TGF-β) mediated signaling pathway. Epigenetic silencing expression of RUNX3, as well as aberrant cytoplasmic retention of RUNX3 protein are causely involved in gastric carcinogenesis. Here, we examined the expression of RUNX3 gene and protein in oral squamous cell carcinomas (OSCCs) and analyzed the methylation status of RUNX3 promoter region.


About 10 normal oral mucosa and 30 OSCCs were collected to examine RUNX3 expression by RT-PCR analysis and immunohistochemistry assay using anti-RUNX3 monoclonal antibody R3-6E9. Methylation-specific PCR was carried out on the same specimens to analyze the methylation status of RUNX3 promoter. In addition, the stored paraffin-embedded specimens, including 40 oral leucoplakia (OLK) and 120 OSCCs, were examined by immunohistochemistry assay.


RUNX3 gene and protein were underexpressed in OSCCs due to promoter hypermethylation. Protein mislocalization occured frequently. Both downregulation of RUNX3 protein expression (P = 0.001) and protein mislocalization (P = 0.001) were correlated with the differentiation grades in OSCCs.


RUNX3 plays an important role in oral carcinogenesis. It may be a useful diagnostic marker and a potential therapeutic target for OSCC.


Hypermethylation Runt-related transcription factor 3 Oral squamous cell carcinoma Methylation-specific PCR Protein mislocalization 



Methylation-specific PCR


Oral leukoplakia


Oral squamous cell carcinoma


Runt-related transcription factor 3


Transforming growth factor-β



We acknowledge the grant support from Oncology Research Institute, National University of Singapore, National Natural Science Foundation of China (No. 30300387, 30471891, 30672323), New Century Talents Support Program of MOE(NCET-04-0865), Specialized Research Fund for the Doctoral Program of Higher Education (No.20040610077), Applied Basic Investigation Foundation of Sichuan (No.035G022-004).

Conflict of interest statement

There is no conflict of interest in this study.


  1. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358. doi: 10.1056/NEJM200005043421807 PubMedCrossRefGoogle Scholar
  2. Chim CS, Liang R, Tam CY, Kwong YL (2001) Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol 19:2033–2040PubMedGoogle Scholar
  3. Goelz SE, Hamilton SR, Vogelstein B (1985) Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem Biophys Res Commun 130:118–126. doi: 10.1016/0006-291X(85)90390-0 PubMedCrossRefGoogle Scholar
  4. Ha PK, Califano JA (2006) Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol 7:77–82. doi: 10.1016/S1470-2045(05)70540-4 PubMedCrossRefGoogle Scholar
  5. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826. doi: 10.1073/pnas.93.18.9821 PubMedCrossRefGoogle Scholar
  6. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immuno peroxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  7. Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H et al (2005) RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res 65:7743–7750. doi: 10.1158/0008-5472.CAN-05-0072 PubMedCrossRefGoogle Scholar
  8. Ito Y, Miyazono K (2003) RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr Opin Genet Dev 13:43–47. doi: 10.1016/S0959-437X(03)00007-8 PubMedCrossRefGoogle Scholar
  9. Kim TY, Lee HJ, Hwang KS, Lee M, Kim JW, Bang YJ et al (2004) Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Lab Invest 84:479–484. doi: 10.1038/labinvest.3700060 PubMedCrossRefGoogle Scholar
  10. Kim WJ, Kim EJ, Jeong P, Quan C, Kim J, Li QL et al (2005) RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65:9347–9354. doi: 10.1158/0008-5472.CAN-05-1647 PubMedCrossRefGoogle Scholar
  11. Kornberg LJ, Villaret D, Popp M, Lui L, McLaren R, Brown H et al (2005) Gene expression profiling in squamous cell carcinoma of the oral cavity shows abnormalities in several signaling pathways. Laryngoscope 115:690–698PubMedGoogle Scholar
  12. Ku JL, Kang SB, Shin YK et al (2004) Promoter hypermethylation downregulates RUNX3 gene expression in colorectal cancer cell lines. Oncogene 23:6736–6742. doi: 10.1038/sj.onc.1207731 PubMedCrossRefGoogle Scholar
  13. Lau QC, Raja E, Salto-Tellez M, Liu Q, Lau QC, Ito K et al (2006) RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res 66:6512–6520. doi: 10.1158/0008-5472.CAN-06-0369 PubMedCrossRefGoogle Scholar
  14. Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ et al (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113–124. doi: 10.1016/S0092-8674(02)00690-6 PubMedCrossRefGoogle Scholar
  15. Li QL, Kim HR, Kim WJ, Choi JK, Lee YH, Kim HM et al (2004) Transcriptional silencing of RUNX3 gene by CpG hypermethylation is associated with lung cancer. Biochem Biophys Res Commun 314:223–228. doi: 10.1016/j.bbrc.2003.12.079 PubMedCrossRefGoogle Scholar
  16. Lund AH, Van LM (2002) RUNX: a trilogy of cancer genes. Cancer Cell 1:213–215. doi: 10.1016/S1535-6108(02)00049-1 PubMedCrossRefGoogle Scholar
  17. Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9:158–163. doi: 10.1016/S0959-437X(99)80024-0 PubMedCrossRefGoogle Scholar
  18. Park WS, Cho YG, Kim CJ, Song JH, Lee YS, Kim SY et al (2005) Hypermethylation of the RUNX3 gene in hepatocellular Carcinoma. Exp Mol Med 37:276–281PubMedGoogle Scholar
  19. Paterson IC, Matthews JB, Huntley S, Robinson CM, Fahey M, Parkinson EK, Prime EK (2001) Decreased expression of TGF-beta cell surface receptors during progression of human oral squamous cell carcinoma. J Pathol 193:458–467. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH822>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  20. Pindborg JJ, Reichart PA, Smith CJ (1997) Histological typing of cancer and precancer of the oral mucosa, 2nd edn. World Health Organization, Springer, BerlinGoogle Scholar
  21. Rodrigues VC, Moss SM, Tuomainen H (1998) Oral cancer in the UK: to screen or not screen. Oral Oncol 34:454–465. doi: 10.1016/S1368-8375(98)00052-9 PubMedCrossRefGoogle Scholar
  22. Siegel P, Massague J (2003) Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 3:807–818. doi: 10.1038/nrc1208 PubMedCrossRefGoogle Scholar
  23. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T et al (2002) Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111:621–633. doi: 10.1016/S0092-8674(02)01111-X PubMedCrossRefGoogle Scholar
  24. Tanji Y, Osaki M, Nagahama Y, Kodani I, Ryoke K, Ito H (2007) Runt-related transcription factor 3 expression in human oral squamous cell carcinomas; implication for tumor progression and prognosis. Oral Oncol 43:88–94. doi: 10.1016/j.oraloncology.2006.01.009 PubMedCrossRefGoogle Scholar
  25. Torquati A, O’Rear L, Longobardi L, Spagnoli A, Richards WO, Daniel Beauchamp R (2004) RUNX3 inhibits cell proliferation and induces apoptosis by reinstating transforming growth factor beta responsiveness in esophageal adenocarcinoma cells. Surgery 136:310–316. doi: 10.1016/j.surg.2004.05.005 PubMedCrossRefGoogle Scholar
  26. Wada M, Yazumi S, Takaishi S, Hasegawa K, Sawada M, Tanaka H et al (2004) Frequent loss of RUNX3 gene expression in human bile duct and pancreatic cancer cell lines. Oncogene 23:2401–2407. doi: 10.1038/sj.onc.1207395 PubMedCrossRefGoogle Scholar
  27. Wei D, Gong W, Oh SC, Li Q, Kim WD, Wang L et al (2005) Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res 65:4809–4816. doi: 10.1158/0008-5472.CAN-04-3741 PubMedCrossRefGoogle Scholar
  28. Woolf E, Xiao C, Fainaru O, Lotem J, Rosen D, Negreanu V et al (2003) Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci USA 100:7731–7736. doi: 10.1073/pnas.1232420100 PubMedCrossRefGoogle Scholar
  29. Xiao WH, Liu WW (2004) Hemizygous deletion and hypermethylation of RUNX3 gene in hepatocellular carcinoma. World J Gastroenterol 10:376–380PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Feng Gao
    • 1
  • Canhua Huang
    • 2
  • Mei Lin
    • 1
  • Zhi Wang
    • 1
  • Jun Shen
    • 1
  • Haiyuan Zhang
    • 3
  • Lu Jiang
    • 1
  • Qianming Chen
    • 1
  1. 1.State Key Laboratory for Dental Medicines and West China College of StomatologySichuan UniversityChengduPeople’s Republic of China
  2. 2.State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan UniversityChengduPeople’s Republic of China
  3. 3.Oncology Research Institute, National University of SingaporeSingaporeSingapore

Personalised recommendations