Effect of the ABCB1 modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice

  • Martina Hubensack
  • Christine Müller
  • Peter Höcherl
  • Stephan Fellner
  • Thilo Spruss
  • Günther Bernhardt
  • Armin Buschauer
Original Paper



Previously, we studied the effect of co-administration of paclitaxel with the second generation ABCB1 (p-gp) modulator valspodar on the intracerebral growth of human U118-MG glioblastoma in nude mice. Valspodar significantly increased the brain levels of paclitaxel by inhibition of p-gp expressed at the blood brain barrier. Thus, the tumour burden was reduced by 90%, which was considered as a proof of concept. However, the paclitaxel dose had to be reduced because of toxic side effects resulting from increased drug levels due to p-gp modulation in peripheral tissues. Therefore, in the present study we examined the co-application of paclitaxel with the third generation ABCB1 modulators elacridar and tariquidar, which were supposed to preferentially modulate p-gp in brain capillaries.


The inhibitory activity of the modulators was measured by a flow cytometric and a chemosensitivity assay in vitro. To determine the distribution of paclitaxel in vivo, nude mice received 50 mg/kg of valspodar, elacridar or tariquidar p.o. (control: vehicle) 4 h before i.v. injection of 8 mg/kg of paclitaxel. Brain, liver, kidney and plasma were collected and analyzed by RP-HPLC.


Our in vitro experiments demonstrate that the new modulators are about 80 times more effective in comparison to valspodar. Co-administration of paclitaxel with elacridar and tariquidar led to a long lasting fivefold increase in the concentration of the cytostatic in the brain. Although the increase (2.5- to 7-fold) tended to be lower compared to that induced by co-administered valspodar (six- to eightfold), the brain/plasma ratios achieved with the new modulators were 2–15 times higher.


Elacridar and tariquidar seem to modulate p-glycoprotein preferentially at the blood–brain barrier. Our results suggest that the systemic toxicity of cytostatics combined with elacridar or tariquidar should be lower than in combination with valspodar.


Blood brain barrier ABCB1 P-glycoprotein 170 Valspodar Elacridar Tariquidar Paclitaxel 



ABC transporter B1


Blood–brain barrier


Human immunodeficiency virus


HIV protease inhibitor


Multi drug resistance


P-glycoprotein 170



The authors thank F. Wiesenmayer, O. Baumann and S. Bollwein for their excellent technical assistance.


  1. Bauer B, Hartz AMS, Fricker G, Miller DS (2005) Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med 230(2):118–127Google Scholar
  2. Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104(1):29–45PubMedCrossRefGoogle Scholar
  3. Bernhardt G, Reile H, Birnböck H, Spruss T, Schönenberger H (1992) Standardized kinetic microassay to quantify differential chemosensitivity on the basis of proliferative activity. J Cancer Res Clin Oncol 118(1):35–41PubMedCrossRefGoogle Scholar
  4. Boniface GR, Ferry DR, Atsmon J, Inbar M, van Tellingen O, Abraham J, Bates SE, Fajo AT, Thomas H, Mould G, Steiner J, Mellows G (2002) XR 9576 (tariquidar), a potent and specific p-glycoprotein inhibitor, has minimal effects on the pharmacokinetics of paclitaxel, doxorubicin, and vinorelbine and can be administered with full-dose chemotherapy in patients with cancer. Proc Am Soc Clin Oncol 21 (abstract 2173)Google Scholar
  5. Brandes AA, Pasetto LM, Monfardini S (2000) New drugs in recurrent high grade gliomas. Anticancer Res 20(3B):1913–1920PubMedGoogle Scholar
  6. Breedveld P, Beijnen JH, Schellens JHM (2006) Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 27(1):17–24PubMedCrossRefGoogle Scholar
  7. Dodic N, Dumaitre B, Daugan A, Pianetti P (1995) Synthesis and activity against multidrug resistance in Chinese hamster ovary cells of new acridone-4-carboxamides. J Med Chem 38(13):2418–2426PubMedCrossRefGoogle Scholar
  8. Edwards JE, Brouwer KR, McNamara PJ (2002) GF120918, a P-glycoprotein modulator, increases the concentration of unbound amprenavir in the central nervous system in rats. Antimicrob Agents Chemother 46(7):2284–2286PubMedCrossRefGoogle Scholar
  9. Egger M, Li X, Müller C, Bernhardt G, Buschauer A, König B (2007) Tariquidar analogues: synthesis by Cu(I)-catalysed N/O-aryl coupling and inhibitory activity against the ABCB1 transporter. Eur J Org Chem (16):2643–2649CrossRefGoogle Scholar
  10. Fellner S (2001) Pharmakokinetische und pharmakodynamische Untersuchungen zur Koapplikation von MDR-Modulatoren (SDZ PSC 833) und Hyaluronidase bei der Chemotherapie maligner Gliome. Doctoral thesis. University of Regensburg, Regensburg, GermanyGoogle Scholar
  11. Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhänel M, Spruss T, Bernhardt G, Gräff C, Färber L, Gschaidmeier H, Buschauer A, Fricker G (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 110(9):1309–1318PubMedGoogle Scholar
  12. Fischer V, Rodriguez-Gascon A, Heitz F, Tynes R, Hauck C, Cohen D, Vickers AEM (1998) The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug–drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos 26(8):802–811PubMedGoogle Scholar
  13. Fricker G, Miller DS (2004) Modulation of drug transporters at the blood–brain barrier. Pharmacology 70(4):169–176PubMedCrossRefGoogle Scholar
  14. Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25(8):423–429PubMedCrossRefGoogle Scholar
  15. Glantz MJ, Chamberlain MC, Chang SM, Prados MD, Cole BF (1999) The role of paclitaxel in the treatment of primary and metastatic brain tumors. Semin Radiat Oncol 9(2 Suppl 1):27–33PubMedGoogle Scholar
  16. Homolya L, Hollo Z, Germann U, Pastan I, Gottesman M, Sarkadi B (1993) Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem 268(29):21493–21496PubMedGoogle Scholar
  17. Hubensack M (2005) Approaches to overcome the blood brain barrier in the chemotherapy of primary and secondary brain tumors: modulation of P-glycoprotein 170 and targeting of the transferrin receptor. Doctoral thesis. University of Regensburg, Regensburg, Germany. http://www.opus-bayern.de/uni-regensburg/volltexte/2005/471/
  18. Huisman MT, Smit JW, Wiltshire HR, Beijnen JH, Schinkel AH (2003) Assessing safety and efficacy of directed P-glycoprotein inhibition to improve the pharmacokinetic properties of saquinavir coadministered with ritonavir. J Pharmacol Exp Ther 304(2):596–602PubMedCrossRefGoogle Scholar
  19. Hyafil F, Vergely C, Du Vignaud P., Grand-Perret T (1993) In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53(19):4595–4602PubMedGoogle Scholar
  20. Kemper EM, van Zandbergen AE, Cleypool C, Mos HA, Boogerd W, Beijnen JH, van Tellingen O (2003) Increased penetration of paclitaxel into the brain by inhibition of P-glycoprotein. Clin Cancer Res 9(7):2849–2855PubMedGoogle Scholar
  21. Kemper EMVM, Boogerd W, Beijnen JH, Van Tellingen O (2004) Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 40(8):1269–1274PubMedCrossRefGoogle Scholar
  22. Kohno K, Kikuchi J, Sato S, Takano H, Saburi Y, Asoh K, Kuwano M (1988) Vincristine-resistant human cancer KB cell line and increased expression of multidrug-resistance gene. Jpn J Cancer Res 79(11):1238–1246PubMedGoogle Scholar
  23. Kruijtzer CMF, Beijnen JH, Rosing H, ten Bokkel Huinink WW, Schot M, Jewell RC, Paul EM, Schellens JHM (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20(13):2943–2950PubMedCrossRefGoogle Scholar
  24. Kurnik D, Wood AJJ, Wilkinson GR (2006) The erythromycin breath test reflects P-glycoprotein function independently of cytochrome P450 3A activity. Clin Pharmacol Ther 80(3):228–234PubMedCrossRefGoogle Scholar
  25. Labrie P, Maddaford SP, Lacroix J, Catalano C, Lee DK, Rakhit S, Gaudreault RC (2007) In vitro activity of novel dual action MDR anthranilamide modulators with inhibitory activity on CYP-450 (Part 2). Bioorg Med Chem 15(11):3854–3868PubMedCrossRefGoogle Scholar
  26. Letrent SPPGM, Brouwer KR, Brouwer KL (1998) Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat. Pharm Res 15(4):599–605PubMedCrossRefGoogle Scholar
  27. Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6(8):591–602PubMedCrossRefGoogle Scholar
  28. Mistry P, Stewart AJ, Dangerfield W, Okiji S, Liddle C, Bootle D, Plumb JA, Templeton D, Charlton P (2001) In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 61(2):749–758PubMedGoogle Scholar
  29. Müller C, Gross D, Sarli V, Gartner M, Giannis A, Bernhardt G, Buschauer A (2007) Inhibitors of kinesin Eg5: antiproliferative activity of monastrol analogues against human glioblastoma cells. Cancer Chemother Pharmacol 59(2):157–164PubMedCrossRefGoogle Scholar
  30. Roe M, Folkes A, Ashworth P, Brumwell J, Chima L, Hunjan S, Pretswell I, Dangerfield W, Ryder H, Charlton P (1999) Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg Med Chem Lett 9(4):595–600PubMedCrossRefGoogle Scholar
  31. Scherrmann JM (2002) Drug delivery to brain via the blood–brain barrier. Vasc Pharmacol 38(6):349–354CrossRefGoogle Scholar
  32. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J (2003) Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem 46(9):1716–1725PubMedCrossRefGoogle Scholar
  33. Sharp MJ, Mader CJ, Strachan C (1998) Synthesis of acridine derivative as multidrug-resistant inhibitor. Patent WO 98-EP2991 19980522Google Scholar
  34. Sparreboom A, van Tellingen O, Nooijwn WJ, Beijnen JH (1995) Determination of paclitaxel and metabolites in mouse plasma, tissues, urine and faeces by semi-automated reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Appl 664(2):383–391PubMedCrossRefGoogle Scholar
  35. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DKF, Borst P, Nooijen WJ, Beijnen JH, van Tellingen O (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 94(5):2031–2035PubMedCrossRefGoogle Scholar
  36. Sparreboom A, Planting AST, Jewell RC, Van der Burg MEL, Van der Gaast A, De Bruijn P, Loos WJ, Nooter K, Chandler LH, Paul EM, Wissel PS, Verweij J (1999) Clinical pharmacokinetics of doxorubicin in combination with GF120918, a potent inhibitor of MDR1 P-glycoprotein. Anticancer Drugs 10(8):719–728PubMedCrossRefGoogle Scholar
  37. Stewart A, Steiner J, Mellows G, Laguda B, Norris D, Bevan P (2000) Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56+ lymphocytes after oral and intravenous administration. Clin Cancer Res 6(11):4186–4191PubMedGoogle Scholar
  38. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234PubMedCrossRefGoogle Scholar
  39. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10(2):159–165PubMedGoogle Scholar
  40. Tian Q, Zhang J, Chan E, Duan W, Zhou S (2005) Multidrug resistance proteins (MRPs) and implication in drug development. Drug Dev Res 64(1):1–18CrossRefGoogle Scholar
  41. van Asperen J, van Tellingen O, Sparreboom A, Schinkel AH, Borst P, Nooijen WJ, Beijnen JH (1997) Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br J Cancer 76(9):1181–1183PubMedGoogle Scholar
  42. Wandel C, Kim RB, Kajiji S, Guengerich FP, Wilkinson GR, Wood AJ (1999) P-Glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res 59(16):3944–3948PubMedGoogle Scholar
  43. Ward KW, Azzarano LM (2004) Preclinical pharmacokinetic properties of the P-glycoprotein inhibitor GF120918A (HCl salt of GF120918, 9,10-dihydro-5-methoxy-9-oxo-N-[4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]phenyl]-4-acridine-carboxamide) in the mouse, rat, dog, and monkey. J Pharmacol Exp Ther 310(2):703–709PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Martina Hubensack
    • 1
  • Christine Müller
    • 1
  • Peter Höcherl
    • 1
  • Stephan Fellner
    • 1
  • Thilo Spruss
    • 1
  • Günther Bernhardt
    • 1
  • Armin Buschauer
    • 1
  1. 1.Institute of PharmacyUniversity of RegensburgRegensburgGermany

Personalised recommendations