Induction of tumor immunity and cytotoxic t lymphocyte responses using dendritic cells transduced by adenoviral vectors encoding HBsAg: comparison to protein immunization

  • Shuang-Jian Qiu
  • Lina Lu
  • Chunping Qiao
  • LiangFu Wang
  • Zhong Wang
  • Xiao Xiao
  • Shiguang Qian
  • John J. Fung
  • Sheng-Long Ye
  • C. Andrew Bonham
Original Paper


Dendritic cells (DC) are specialized antigen-presenting cells with powerful immunostimulatory properties. Their use for induction of anti-tumor immunity has been limited by several factors, including identification of appropriate tumor-associated antigens, delivery of antigens to DC, and maintaining DC in a highly activated state. Here, DC propagated in vitro were transduced with an adenoviral (Ad) vector to express hepatitis B surface antigen (HBsAg), an antigen present in hepatocellular carcinoma (HCC). Many patients with HCC demonstrate evidence of prior HBV exposure, suggesting that the presence of the virus in a quiescent state may promote tumorigenesis. Ad-HBsAg-transduced DC stimulated strong cytotoxic T lymphocyte (CTL) responses to HBsAg-expressing tumor cells, and protected mice from lethal tumor challenge. Immunity was antigen-specific, as wild-type tumor (HBsAg -) grew normally. Furthermore, DC transduced with an irrelevant vector had no effect. Vaccination with HBsAg protein, a clinically utilized preparation that confers immunity to HBV infection, did not protect against tumor challenge even though it induced a strong antibody response. These studies describe for the first time the contributions of humoral and cellular immune responses to tumor immunity induced by Ad-transduced DC compared to protein vaccination.


Dendritic cells Tumor antigens HBsAg CTL Adenoviral transduction 



This work was supported in part by grants from the Simeon M. Jones, Jr. and Katherine Reed Jones Fund, the Benjamin H. and Portia T. Hosler Fund, and the Walter P. Morrison, Jr. Family Fund administered through The Pittsburgh Foundation and in part by grant from NSFC (30200268)


  1. 1.
    Wang RF, Rosenberg SA (1996) Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. J Leukoc Biol 60:296–309PubMedGoogle Scholar
  2. 2.
    Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296CrossRefPubMedGoogle Scholar
  3. 3.
    Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, et al (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1:1297–1302CrossRefPubMedGoogle Scholar
  4. 4.
    Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46:82–87CrossRefPubMedGoogle Scholar
  5. 5.
    Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al (1996) Vaccination of patients with B-cell lymphoma using autologous antigen- pulsed dendritic cells. Nat Med 2:52–58CrossRefPubMedGoogle Scholar
  6. 6.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332PubMedGoogle Scholar
  7. 7.
    Dhodapkar MV, Young JW, Chapman PB, Cox WI, Fonteneau JF, Amigorena S, et al (2000) Paucity of functional T-cell memory to melanoma antigens in healthy donors and melanoma patients. Clin Cancer Res 6:4831–4838Google Scholar
  8. 8.
    Kanto T, Hayashi N, Takehara T, Tatsumi T, Kuzushita N, Ito A, et al (1999) Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J Immunol 162:5584–5591Google Scholar
  9. 9.
    Grosjean I, Caux C, Bella C, Berger I, Wild F, Banchereau J, et al (1997) Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186:801–812CrossRefPubMedGoogle Scholar
  10. 10.
    Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ, Rabourdin-Combe C (1997) Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813–823CrossRefPubMedGoogle Scholar
  11. 11.
    El-Serag HB, Mason AC (1999) Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340:745–750CrossRefPubMedGoogle Scholar
  12. 12.
    Parkin DM, Stjernsward J, Muir CS (1984) Estimates of the worldwide frequency of twelve major cancers. Bull World Health Organ 62:163–182PubMedGoogle Scholar
  13. 13.
    Chisari FV, Ferrari C (1995) Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13:29–60CrossRefPubMedGoogle Scholar
  14. 14.
    Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV (1998) Immune pathogenesis of hepatocellular carcinoma. J Exp Med 188:341–350CrossRefPubMedGoogle Scholar
  15. 15.
    Morelli AE, Larregina AT, Ganster RW, Zahorchak AF, Plowey JM, Takayama T, et al (2000) Recombinant adenovirus induces maturation of dendritic cells via an NF- kappaB-dependent pathway. J Virol 74:9617–9628CrossRefPubMedGoogle Scholar
  16. 16.
    Thomson AW, Lu L, Subbotin VM, Li Y, Qian S, Rao AS, et al (1995) In vitro propagation and homing of liver-derived dendritic cell progenitors to lymphoid tissues of allogeneic recipients. Implications for the establishment and maintenance of donor cell chimerism following liver transplantation. Transplantation 59:544–551Google Scholar
  17. 17.
    Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186:1177–1182CrossRefPubMedGoogle Scholar
  18. 18.
    Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472CrossRefPubMedGoogle Scholar
  19. 19.
    Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, et al (2000) Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci USA 97:2715–2718Google Scholar
  20. 20.
    Heiser A, Dahm P, Yancey DR, Maurice MA, Boczkowski D, Nair SK, et al (2000) Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol 164:5508–5514Google Scholar
  21. 21.
    Kaplan JM, Yu Q, Piraino ST, Pennington SE, Shankara S, Woodworth LA, et al (1999) Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J Immunol 163:699–707Google Scholar
  22. 22.
    Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J (2000) Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol 165:5713–5719Google Scholar
  23. 23.
    Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369Google Scholar
  24. 24.
    Ranieri E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside T, et al (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest 29:121–125Google Scholar
  25. 25.
    Zheng LM, Ojcius DM, Garaud F, Roth C, Maxwell E, Li Z, et al (1996) Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp Med 184:579–584CrossRefPubMedGoogle Scholar
  26. 26.
    Takayama T, Tahara H, Thomson AW (2001) Differential effects of myeloid dendritic cells retrovirally transduced to express mammalian or viral interleukin-10 on cytotoxic T lymphocyte and natural killer cell functions and resistance to tumor growth. Transplantation 71:1334–1340Google Scholar
  27. 27.
    Chen WF, Zlotnik A (1991) IL-10: a novel cytotoxic T cell differentiation factor. J Immunol 147:528–534Google Scholar
  28. 28.
    Groux H, Cottrez F, Rouleau M, Mauze S, Antonenko S, Hurst S, et al (1999) A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J Immunol 162:1723–1729Google Scholar
  29. 29.
    Berman RM, Suzuki T, Tahara H, Robbins PD, Narula SK, Lotze MT (1996) Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J Immunol 157:231–238Google Scholar
  30. 30.
    Fujii S, Shimizu K, Shimizu T, Lotze M (2001) Interleukin-10 promotes the maintenance of antitumor CD8(+) T cell effector function in situ. Blood 98:2143–2151CrossRefPubMedGoogle Scholar
  31. 31.
    Carson WE, Lindemann MJ, Baiocchi R, Linett M, Tan JC, Chou CC, et al (1995) The functional characterization of interleukin-10 receptor expression on human natural killer cells. Blood 85:3577–3585PubMedGoogle Scholar
  32. 32.
    Giannoukakis N, Thomson A, Robbins P (1999) Gene therapy in transplantation. Gene Ther 6:1499–1511CrossRefPubMedGoogle Scholar
  33. 33.
    Giannoukakis N, Bonham CA, Qian S, Chen Z, Peng L, Harnaha J, et al (2000) Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides. Mol Ther 1:430–437CrossRefPubMedGoogle Scholar
  34. 34.
    He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514Google Scholar
  35. 35.
    Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232PubMedGoogle Scholar
  36. 36.
    Lu L, Gambotto A, Lee WC, Qian S, Bonham CA, Robbins PD, et al (1999) Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients. Gene Ther 6:554–563CrossRefPubMedGoogle Scholar
  37. 37.
    Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702CrossRefPubMedGoogle Scholar
  38. 38.
    Lu L, Woo J, Rao AS, Li Y, Watkins SC, Qian S, et al (1994) Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen. J Exp Med 179:1823–1834CrossRefPubMedGoogle Scholar
  39. 39.
    Lu L, Rudert WA, Qian S, McCaslin D, Fu F, Rao AS, et al (1995) Growth of donor-derived dendritic cells from the bone marrow of murine liver allograft recipients in response to granulocyte/macrophage colony- stimulating factor. J Exp Med 182:379–387CrossRefPubMedGoogle Scholar
  40. 40.
    Lu L, Bonham CA, Chambers FG, Watkins SC, Hoffman RA, Simmons RL, et al (1996) Induction of nitric oxide synthase in mouse dendritic cells by IFN- gamma, endotoxin, and interaction with allogeneic T cells: nitric oxide production is associated with dendritic cell apoptosis. J Immunol 157:3577–3586Google Scholar
  41. 41.
    Lee WC, Wan YH, Li W, Fu F, Sime PJ, Gauldie J, et al (1999) Enhancement of dendritic cell tolerogenicity by genetic modification using adenoviral vectors encoding cDNA for TGF beta 1. Transplant Proc 31:1195CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Shuang-Jian Qiu
    • 2
    • 4
  • Lina Lu
    • 2
  • Chunping Qiao
    • 3
  • LiangFu Wang
    • 2
    • 3
  • Zhong Wang
    • 3
  • Xiao Xiao
    • 3
  • Shiguang Qian
    • 2
  • John J. Fung
    • 2
  • Sheng-Long Ye
    • 4
  • C. Andrew Bonham
    • 1
    • 2
    • 2
  1. 1.Palo AltoUSA
  2. 2.Thomas E. Starzl Transplantation InstituteUniversity of Pittsburgh Medical CenterPittsburghUSA
  3. 3.Department of Surgery and Department of Molecular Genetics & BiochemistryUniversity of Pittsburgh Medical CenterPittsburghUSA
  4. 4.Liver Cancer Institute and Zhongshan HospitalFudan UniversityShanghaiChina

Personalised recommendations