European Journal of Pediatrics

, Volume 174, Issue 6, pp 791–799 | Cite as

Motor performance in children and adolescents with cancer at the end of acute treatment phase

  • Miriam GötteEmail author
  • Sabine V. Kesting
  • Corinna C. Winter
  • Dieter Rosenbaum
  • Joachim Boos
Original Article


Reduced motor performance may particularly limit reintegration into normal life after cessation of treatment in pediatric cancer patients. This study aimed at analyzing motor performance at the end of the acute treatment phase and reveals potential risk factors for motor deficits. A childhood cancer population with different tumor entities was assessed with the MOON test, which allows for comparison with age- and gender-matched reference values of healthy children, at the end of the acute treatment phase. Forty-seven patients were tested at 7.0 ± 2.6 months after diagnosis. Significant reductions of motor performance affected muscular explosive strength (P < 0.001), handgrip strength (P < 0.001), muscular endurance of legs (P = 0.035), hand-eye coordination (P < 0.001), static balance (P = 0.003), speed (P = 0.012), and flexibility (P < 0.001). Loss of upper extremity coordination did not achieve statistical significance. Associations between single motor deficits and the tumor entity, age, body mass index, and inactivity during treatment were revealed, whereas no associations were found for gender and vincristine application.

Conclusion: Overall, motor performance was low in the patient group studied. We recommend that individualized exercise interventions to attenuate motor deficits and promote physical activity are needed during cancer treatment in order to enhance motor performance and improve social participation during and after cancer therapy.


Motor performance Pediatric cancer patients Physical activity Exercise Acute treatment 



Acute lymphoblastic leukemia


Acute myeloid leukemia


Body mass index


Test for motor performance in pediatric oncology



This study was funded by the Cora-Lobscheid Foundation. The authors would like to thank all the children and adolescents who participated in this study and Gabriele Braun-Munzinger for her writing assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The study was approved by the local ethics committee and is therefore in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All patients and legal guardians gave their informed consent prior to their inclusion to the study.


  1. 1.
    Argilés JM, Busquets S, López-Soriano FJ, Costelli P, Penna F (2012) Are there any benefits of exercise training in cancer cachexia? J Cachex Sarcopenia Muscle 3:73–76. doi: 10.1007/s13539-012-0067-5 CrossRefGoogle Scholar
  2. 2.
    Barbieri D, Zaccagni L (2013) Strength training for children and adolescents: benefits and risks. Coll Antropol 37:219–225PubMedGoogle Scholar
  3. 3.
    Baumann FT, Bloch W, Beulertz J (2013) Clinical exercise interventions in pediatric oncology: a systematic review. Pediatr Res 74:366–374. doi: 10.1038/pr.2013.123 CrossRefPubMedGoogle Scholar
  4. 4.
    Beulertz J, Bloch W, Prokop A, Baumann FT (2013) Specific deficit analyses in motor performance and quality of life of pediatric cancer patients—a cross-sectional pilot study. Pediatr Hematol Oncol 30:336–347. doi: 10.3109/08880018.2013.776155 CrossRefPubMedGoogle Scholar
  5. 5.
    Bonneau J, Lebreton J, Taque S, Chappe C, Bayart S, Edan C, Gandemer V (2011) School performance of childhood cancer survivors: mind the teenagers! J Pediatr 158:135–141. doi: 10.1016/j.jpeds.2010.07.008 CrossRefPubMedGoogle Scholar
  6. 6.
    Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJ (2013) Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev 4:CD008796. doi: 10.1002/14651858.CD008796.pub2 PubMedGoogle Scholar
  7. 7.
    Chamorro-Viña C, Guilcher GM, Khan FM, Mazil K, Schulte F, Wurz A, Williamson T, Reimer RA, Culos-Reed SN (2012) EXERCISE in pediatric autologous stem cell transplant patients: a randomized controlled trial period. BMC Cancer 12:401CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Chamorro-Viña C, Ruiz JR, Santana-Sosa E, González Vicent M, Madero L, Pérez M, Fleck SJ, Pérez A, Ramírez M, Lucía A (2010) Exercise during hematopoietic stem cell transplant hospitalization in children. Med Sci Sports Exerc 42:1045–1053. doi: 10.1249/MSS.0b013e3181c4dac1 PubMedGoogle Scholar
  9. 9.
    Cummins A, Piek JP, Dyck MJ (2005) Motor coordination, empathy, and social behaviour in school-aged children. Dev Med Child Neurol 47:437–442CrossRefPubMedGoogle Scholar
  10. 10.
    Davis EE, Pitchford NJ, Jaspan T, McArthur D, Walker D (2010) Development of cognitive and motor function following cerebellar tumour injury sustained in early childhood. Cortex 46:919–932. doi: 10.1016/j.cortex.2009.10.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR (2013) A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act 10:98. doi: 10.1186/1479-5868-10-98 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Faigenbaum AD, Kraemer WJ, Blimkie CJ, Jeffreys I, Micheli LJ, Nitka M, Rowland TW (2009) Youth resistance training: updated position statement paper from the national strength and conditioning association. J Strength Cond Res 23:S60–S79. doi: 10.1519/JSC.0b013e31819df407 CrossRefPubMedGoogle Scholar
  13. 13.
    Götte M, Kesting S, Albrecht C, Worth A, Bös K, Boos J (2013) MOON-test—determination of motor performance in the pediatric oncology. Klin Padiatr 225(3):133–137. doi: 10.1055/s-0033-1343411 CrossRefPubMedGoogle Scholar
  14. 14.
    Götte M, Kesting S, Winter C, Rosenbaum D, Boos J (2014) Comparison of self-reported physical activity in children and adolescents before and during cancer treatment. Pediatr Blood Cancer 61:1023–1028. doi: 10.1002/pbc.24898 CrossRefPubMedGoogle Scholar
  15. 15.
    Götte M, Kesting S, Winter C, Rosenbaum D, Boos J (2014) Experience of barriers and motivations for physical activities and exercise during treatment of pediatric patients with cancer. Pediatr Blood Cancer. doi: 10.1002/pbc.25071 Google Scholar
  16. 16.
    Granacher U, Muehlbauer T, Gollhofer A, Kressig RW, Zahner L (2011) An intergenerational approach in the promotion of balance and strength for fall prevention—a mini-review. Gerontology 57:304–315. doi: 10.1159/000320250 CrossRefPubMedGoogle Scholar
  17. 17.
    Granacher U, Muehlbauer T, Gollhofer A, Kressig RW, Zahner L (2011) Evidence-based and evidence-inspired: an intergenerational approach in the promotion of balance and strength for fall prevention. Gerontology 57:424–426. doi: 10.1159/000322149 PubMedGoogle Scholar
  18. 18.
    Green JL, Knight SJ, McCarthy M, De Luca CR (2013) Motor functioning during and following treatment with chemotherapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 60:1261–1266. doi: 10.1002/pbc.24537 CrossRefPubMedGoogle Scholar
  19. 19.
    Hartman A, van den Bos C, Stijnen T, Pieters R (2006) Decrease in motor performance in children with cancer is independent of the cumulative dose of vincristine. Cancer 106:1395–1401. doi: 10.1002/cncr.21706 CrossRefPubMedGoogle Scholar
  20. 20.
    Hartman A, van den Bos C, Stijnen T, Pieters R (2008) Decrease in peripheral muscle strength and ankle dorsiflexion as long‐term side effects of treatment for childhood cancer. Pediatr Blood Cancer 50:833–837. doi: 10.1002/pbc.21325 CrossRefPubMedGoogle Scholar
  21. 21.
    Jansen NCAJ, Kingma A, Schuitema A, Bouma A, Veerman AJP, Kamps WA (2008) Neuropsychological outcome in chemotherapy-only-treated children with acute lymphoblastic leukemia. J Clin Oncol 26:3025–3030. doi: 10.1200/JCO.2007.12.4149 CrossRefPubMedGoogle Scholar
  22. 22.
    Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36:277–285. doi: 10.1016/j.ctrv.2010.02.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Klassen AF, Anthony SJ, Khan A, Sung L, Klaassen R (2011) Identifying determinants of quality of life of children with cancer and childhood cancer survivors: a systematic review. Support Care Cancer 19:1275–1287. doi: 10.1007/s00520-011-1193-x CrossRefPubMedGoogle Scholar
  24. 24.
    Larcombe IJ, Walker J, Charlton A, Meller S, Morris Jones P, Mott MG (1990) Impact of childhood cancer on return to normal schooling. BMJ 301:169–171CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Lenk K, Schuler G, Adams V (2010) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachex Sarcopenia Muscle 1:9–21. doi: 10.1007/s13539-010-0007-1 CrossRefGoogle Scholar
  26. 26.
    Marchese VG, Chiarello LA, Lange BJ (2003) Strength and functional mobility in children with acute lymphoblastic leukemia. Med Pediatr Oncol 40:230–232. doi: 10.1002/mpo.10266 CrossRefGoogle Scholar
  27. 27.
    McCambridge TM, Stricker PR (2008) Strength training by children and adolescents. Pediatrics 121:835–840. doi: 10.1542/peds. 2007-3790 CrossRefPubMedGoogle Scholar
  28. 28.
    Ocean AJ, Vahdat LT (2004) Chemotherapy-induced peripheral neuropathy: pathogenesis and emerging therapies. Support Care Cancer 12:619–625. doi: 10.1007/s00520-004-0657-7 PubMedGoogle Scholar
  29. 29.
    Reinders-Messelink H, Schoemaker M, Snijders T, Göeken L, van Den Briel M, Bökkerink J, Kamps W (1999) Motor performance of children during treatment for acute lymphoblastic leukemia. Med Pediatr Oncol 33:545–550CrossRefPubMedGoogle Scholar
  30. 30.
    Resch T, Nimz G (2011) Use it or lose it – sind Beweglichkeit und Koordination vernachlässigte Grundfertigkeiten im Gesundheitstraining ? Zeitschrift für Gesundh und Sport 1:53–67Google Scholar
  31. 31.
    San Juan AF, Chamorro-Viña C, Maté-Muñoz JL, Fernández del Valle M, Cardona C, Hernández M, Madero L, Pérez M, Ramírez M, Lucia A (2008) Functional capacity of children with leukemia. Int J Sports Med 29:163–167. doi: 10.1055/s-2007-964908 CrossRefPubMedGoogle Scholar
  32. 32.
    Schoenmakers M, Takken T, Gulmans VAM, Van Meeteren NLU, Bruin MCA, Révész T, Helders PJM (2006) Muscle strength and functional ability in children during and after treatment for acute lymphoblastic leukemia or T-cell Non-Hodgkin lymphoma: a pilot study. Cancer Ther 4:241–248Google Scholar
  33. 33.
    Soares-Miranda L, Fiuza-Luces C, Lassaletta A, Santana-Sosa E, Padilla JR, Ferndández-Casanova L, Lorenzo-González R, López-Mojares LM, Pérez M, Pérez-Martínez A, Lucia A (2013) Physical activity in pediatric cancer patients with solid tumors (PAPEC): trial rationale and design. Contemp Clin Trials 36:106–115CrossRefPubMedGoogle Scholar
  34. 34.
    Speyer E, Herbinet A, Vuillemin A, Briançon S, Chastagner P (2010) Effect of adapted physical activity sessions in the hospital on health-related quality of life for children with cancer: a cross-over randomized trial. Pediatr Blood Cancer 55:1160–1166. doi: 10.1002/pbc.22698 CrossRefPubMedGoogle Scholar
  35. 35.
    Stene GB, Helbostad JL, Balstad TR, Riphagen II, Kaasa S, Oldervoll LM (2013) Effect of physical exercise on muscle mass and strength in cancer patients during treatment—a systematic review. Crit Rev Oncol Hematol 88:573–593. doi: 10.1016/j.critrevonc.2013.07.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Tan SY, Poh BK, Chong HX, Ismail MN, Rahman J, Zarina AL, Juraida AR, Tahir A, Ruzita AT, Roslee R, Shanita SN, Hamidah A, Shah MI, Norimah AK (2013) Physical activity of pediatric patients with acute leukemia undergoing induction or consolidation chemotherapy. Leuk Res 37:14–20. doi: 10.1016/j.leukres.2012.09.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Van Brussel M, Takken T, Lucia A, van der Net J, Helders PJ (2005) Is physical fitness decreased in survivors of childhood leukemia? A systematic review. Leukemia 19:13–17. doi: 10.1038/sj.leu.2403547 PubMedGoogle Scholar
  38. 38.
    Van Brussel M, Takken T, van der Net J, Engelbert RH, Bierings M, Schoenmakers MA, Helders PJ (2006) Physical function and fitness in long-term survivors of childhood leukaemia. Pediatr Rehabil 9:267–274. doi: 10.1080/13638490500523150 PubMedGoogle Scholar
  39. 39.
    Winter C, Müller C, Brandes M, Brinkmann A, Hoffmann C, Hardes J, Gosheger G, Boos J, Rosenbaum D (2009) Level of activity in children undergoing cancer treatment. Pediatr Blood Cancer 53:438–443. doi: 10.1002/pbc.22055 CrossRefPubMedGoogle Scholar
  40. 40.
    Winter CC, Müller C, Hardes J, Gosheger G, Boos J, Rosenbaum D (2013) The effect of individualized exercise interventions during treatment in pediatric patients with a malignant bone tumor. Support Care Cancer 21:1629–1636. doi: 10.1007/s00520-012-1707-1 CrossRefPubMedGoogle Scholar
  41. 41.
    Wright MJ, Halton JM, Martin RF, Barr RD (1998) Long-term gross motor performance following treatment for acute lymphoblastic leukemia. Med Pediatr Oncol 31:86–90CrossRefPubMedGoogle Scholar
  42. 42.
    Zebrack BJ (2011) Psychological, social, and behavioral issues for young adults with cancer. Cancer 117:2289–2294. doi: 10.1002/cncr.26056 CrossRefPubMedGoogle Scholar
  43. 43.
    Zeltzer LK, Recklitis C, Buchbinder D, Zebrack B, Casillas J, Tsao JC, Lu Q, Krull K (2009) Psychological status in childhood cancer survivors: a report from the Childhood Cancer Survivor Study. J Clin Oncol 27:2396–2404. doi: 10.1200/JCO.2008.21.1433 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Miriam Götte
    • 1
    Email author
  • Sabine V. Kesting
    • 1
  • Corinna C. Winter
    • 2
  • Dieter Rosenbaum
    • 2
  • Joachim Boos
    • 1
  1. 1.Department of Pediatric Hematology and OncologyUniversity Hospital of MünsterMünsterGermany
  2. 2.Movement Analysis Lab, Institute for Experimental Musculoskeletal MedicineUniversity Hospital of MünsterMünsterGermany

Personalised recommendations