European Journal of Pediatrics

, Volume 174, Issue 4, pp 465–471 | Cite as

Nasal high-frequency oscillation ventilation in neonates: a survey in five European countries

  • Hendrik Stefan Fischer
  • Kajsa Bohlin
  • Christoph Bührer
  • Gerd Schmalisch
  • Malte Cremer
  • Irwin Reiss
  • Christoph Czernik
Original Article


Nasal high-frequency oscillation ventilation (nHFOV) is a non-invasive ventilation mode that applies an oscillatory pressure waveform to the airways using a nasal interface. nHFOV has been shown to facilitate carbon dioxide expiration, but little is known about its use in neonates. In a questionnaire-based survey, we assessed nHFOV use in neonatal intensive care units (NICUs) in Austria, Switzerland, Germany, the Netherlands, and Sweden. Questions included indications for nHFOV, equipment used, ventilator settings, and observed side effects. Of the clinical directors of 186 NICUs contacted, 172 (92 %) participated. Among those responding, 30/172 (17 %) used nHFOV, most frequently in premature infants <1500 g (27/30) for the indication nasal continuous positive airway pressure (nCPAP) failure (27/30). Binasal prongs (22/30) were the most common interfaces. The median (range) mean airway pressure when starting nHFOV was 8 (6–12) cm H2O, and the maximum mean airway pressure was 10 (7–18) cm H2O. The nHFOV frequency was 10 (6–13) Hz. Abdominal distension (11/30), upper airway obstruction due to secretions (8/30), and highly viscous secretions (7/30) were the most common nHFOV side effects.

Conclusion: In a number of European NICUs, clinicians use nHFOV. The present survey identified differences in nHFOV equipment, indications, and settings. Controlled clinical trials are needed to investigate the efficacy and side effects of nHFOV in neonates.


High-frequency oscillation Non-invasive ventilation Continuous positive airway pressure Side effects Neonate Survey 



Bronchopulmonary dysplasia


High-frequency oscillation ventilation


Nasal continuous positive airway pressure


Nasal high-frequency oscillation ventilation


Neonatal intensive care unit


Nasal intermittent positive pressure ventilation


Mean pressure


Respiratory distress syndrome


Very low birth weight infant

Supplementary material

431_2014_2419_MOESM1_ESM.pdf (15 kb)
Online Resource 1(PDF 14 kb)


  1. 1.
    American Academy of Pediatrics Committee on Fetus and Newborn (2012) Levels of neonatal care. Pediatrics 130:587–597CrossRefGoogle Scholar
  2. 2.
    Carlo WA (2008) Should nasal high-frequency ventilation be used in preterm infants? Acta Paediatr 97:1484–1485CrossRefPubMedGoogle Scholar
  3. 3.
    Chikata Y, Imanaka H, Onishi Y, Ueta M, Nishimura M (2009) Humidification during high-frequency oscillation ventilation is affected by ventilator circuit and ventilatory setting. Paediatr Anaesth 19:779–783CrossRefPubMedGoogle Scholar
  4. 4.
    Colaizy TT, Younis UM, Bell EF, Klein JM (2008) Nasal high-frequency ventilation for premature infants. Acta Paediatr 97:1518–1522CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Cremer M, Sola-Visner M, Roll S, Josephson CD, Yilmaz Z, Bührer C, Dame C (2011) Platelet transfusions in neonates: practices in the United States vary significantly from those in Austria, Germany, and Switzerland. Transfusion 51:2634–2641CrossRefPubMedGoogle Scholar
  6. 6.
    Czernik C, Schmalisch G, Bührer C, Proquitte H (2012) Weaning of neonates from mechanical ventilation by use of nasopharyngeal high-frequency oscillatory ventilation: a preliminary study. J Matern Fetal Neonatal Med 25:374–378CrossRefPubMedGoogle Scholar
  7. 7.
    De Luca D, Carnielli VP, Conti G, Piastra M (2010) Noninvasive high frequency oscillatory ventilation through nasal prongs: bench evaluation of efficacy and mechanics. Intensive Care Med 36:2094–2100CrossRefPubMedGoogle Scholar
  8. 8.
    De Luca D, Piastra M, Pietrini D, Conti G (2012) Effect of amplitude and inspiratory time in a bench model of non-invasive HFOV through nasal prongs. Pediatr Pulmonol 47:1012–1018CrossRefPubMedGoogle Scholar
  9. 9.
    De Paoli AG, Davis PG, Faber B, Morley CJ (2008) Devices and pressure sources for administration of nasal continuous positive airway pressure (NCPAP) in preterm neonates. The Cochrane Database Systematic Rev CD002977Google Scholar
  10. 10.
    De Paoli AG, Morley CJ, Davis PG, Lau R, Hingeley E (2002) In vitro comparison of nasal continuous positive airway pressure devices for neonates. Arch Dis Child Fetal Neonatal Ed 87:F42–45CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    DeMauro SB, Millar D, Kirpalani H (2014) Noninvasive respiratory support for neonates. Curr Opin Pediatr 26(2):157–162CrossRefPubMedGoogle Scholar
  12. 12.
    Desager KN, Cauberghs M, Naudts J, van de Woestijne KP (1999) Influence of upper airway shunt on total respiratory impedance in infants. J Appl Physiol 87:902–909PubMedGoogle Scholar
  13. 13.
    Dumas De La Roque E, Bertrand C, Tandonnet O, Rebola M, Roquand E, Renesme L, Elleau C (2011) Nasal high frequency percussive ventilation versus nasal continuous positive airway pressure in transient tachypnea of the newborn: a pilot randomized controlled trial. Pediatr Pulmonol 46:218–223CrossRefPubMedGoogle Scholar
  14. 14.
    Fischer HS, Bührer C (2013) Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics 132:e1351–1360CrossRefPubMedGoogle Scholar
  15. 15.
    Fischer HS, Roehr CC, Proquitte H, Hammer H, Wauer RR, Schmalisch G (2009) Is volume and leak monitoring feasible during nasopharyngeal continuous positive airway pressure in neonates? Intensive Care Med 35:1934–1941CrossRefPubMedGoogle Scholar
  16. 16.
    Fischer HS, Roehr CC, Proquitte H, Schmalisch G (2013) Influence of nose and mouth leaks on peripheral oxygen saturation during continuous positive airway pressure in neonates. World J Pediatr 9:318–322CrossRefPubMedGoogle Scholar
  17. 17.
    Gagliardi L, Tagliabue P, Bellu R, Corchia C, Mosca F, Zanini R, Network Neonatale Italiano (2012) Survey of neonatal respiratory support use in very preterm infants in Italy. J Matern Fetal Neonatal Med 25(3):1–5CrossRefPubMedGoogle Scholar
  18. 18.
    Göpel W, Kribs A, Ziegler A, Laux R, Hoehn T, Wieg C, Siegel J, Avenarius S, von der Wense A, Vochem M, Groneck P, Weller U, Möller J, Härtel C, Haller S, Roth B, Herting E (2011) Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): an open-label, randomised, controlled trial. Lancet 378:1627–1634CrossRefPubMedGoogle Scholar
  19. 19.
    Hoehn T, Krause MF (2000) Effective elimination of carbon dioxide by nasopharyngeal high-frequency ventilation. Respir Med 94:1132–1134CrossRefPubMedGoogle Scholar
  20. 20.
    Jobe AH (2002) Decreased indicators of lung injury with continuous positive expiratory pressure in preterm lambs. Pediatr Res 52:387–392CrossRefPubMedGoogle Scholar
  21. 21.
    Jobe AH, Ikegami M (1998) Mechanisms initiating lung injury in the preterm. Early Hum Dev 53:81–94CrossRefPubMedGoogle Scholar
  22. 22.
    Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH (2012) Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants. Intensive Care Med 38:294–299CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Mukerji A, Finelli M, Belik J (2013) Nasal high-frequency oscillation for lung carbon dioxide clearance in the newborn. Neonatology 103:161–165CrossRefPubMedGoogle Scholar
  24. 24.
    Nagaya K, Okamoto T, Nakamura E, Hayashi T, Fujieda K (2009) Airway humidification with a heated wire humidifier during high-frequency ventilation using Babylog 8000 plus in neonates. Pediatr Pulmonol 44:260–266CrossRefPubMedGoogle Scholar
  25. 25.
    Network SSGotEKSNNR, Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, Yoder BA, Faix RG, Das A, Poole WK, Donovan EF, Newman NS, Ambalavanan N, Frantz ID 3rd, Buchter S, Sanchez PJ, Kennedy KA, Laroia N, Poindexter BB, Cotten CM, Van Meurs KP, Duara S, Narendran V, Sood BG, O'Shea TM, Bell EF, Bhandari V, Watterberg KL, Higgins RD (2010) Early CPAP versus surfactant in extremely preterm infants. N Engl J Med 362:1970–1979CrossRefGoogle Scholar
  26. 26.
    Owen LS, Morley CJ, Dawson JA, Davis PG (2011) Effects of non-synchronised nasal intermittent positive pressure ventilation on spontaneous breathing in preterm infants. Arch Dis Child Fetal Neonatal Ed 96:422–428CrossRefGoogle Scholar
  27. 27.
    Pillow JJ, Hillman N, Moss TJ, Polglase G, Bold G, Beaumont C, Ikegami M, Jobe AH (2007) Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs. Am J Respir Crit Care Med 176:63–69CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Richards GN, Cistulli PA, Ungar RG, Berthon-Jones M, Sullivan CE (1996) Mouth leak with nasal continuous positive airway pressure increases nasal airway resistance. Am J Respir Crit Care Med 154:182–186CrossRefPubMedGoogle Scholar
  29. 29.
    Roehr CC, Schmalisch G, Khakban A, Proquitte H, Wauer RR (2007) Use of continuous positive airway pressure (CPAP) in neonatal units—a survey of current preferences and practice in Germany. Eur J Med Res 12:139–144PubMedGoogle Scholar
  30. 30.
    Schmölzer GM, Kumar M, Pichler G, Aziz K, O'Reilly M, Cheung PY (2013) Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ 347:f5980CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, Hale EC, Newman NS, Schibler K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz RA, Duara S, Sanchez PJ, O'Shea TM, Goldberg RN, Van Meurs KP, Faix RG, Phelps DL, Frantz ID 3rd, Watterberg KL, Saha S, Das A, Higgins RD, Eunice Kennedy Shriver National Institute of Child Health, Human Development Neonatal Research Network (2010) Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126:443–456CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Van der Hoeven M, Brouwer E, Blanco CE (1998) Nasal high frequency ventilation in neonates with moderate respiratory insufficiency. Arch Dis Child Fetal Neonatal Ed 79:61–63CrossRefGoogle Scholar
  33. 33.
    Van Reempts P, Gortner L, Milligan D, Cuttini M, Petrou S, Agostino R, Field D, den Ouden L, Borch K, Mazela J, Carrapato M, Zeitlin J, Group MR (2007) Characteristics of neonatal units that care for very preterm infants in Europe: results from the MOSAIC study. Pediatrics 120:815–825CrossRefGoogle Scholar
  34. 34.
    Zeitlin J, Papiernik E, Breart G, Group E (2004) Regionalization of perinatal care in Europe. Semin Neonatol 9:99–110CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hendrik Stefan Fischer
    • 1
  • Kajsa Bohlin
    • 2
  • Christoph Bührer
    • 1
  • Gerd Schmalisch
    • 1
  • Malte Cremer
    • 1
  • Irwin Reiss
    • 3
  • Christoph Czernik
    • 1
  1. 1.Department of NeonatologyCharité Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of NeonatologyKarolinska University Hospital Huddinge and Karolinska InstitutetStockholmSweden
  3. 3.Department of NeonatologyErasmus Medisch Centrum RotterdamRotterdamThe Netherlands

Personalised recommendations