European Journal of Pediatrics

, Volume 172, Issue 9, pp 1271–1275

Extraintestinal manifestations in an infant with microvillus inclusion disease: complications or features of the disease?

  • Tania Siahanidou
  • Eirini Koutsounaki
  • Anna-Venetia Skiathitou
  • Kalliopi Stefanaki
  • Evangelos Marinos
  • Ioanna Panajiotou
  • Giorgos Chouliaras
Case Report


Microvillus inclusion disease (MVID), a rare severe congenital enteropathy characterized by intracytoplasmic microvillous inclusions and variable brush border atrophy on intestinal epithelial cells histology, is associated with defective synthesis or abnormal function of the motor protein myosin Vb encoded by the MYO5B gene. Although MYO5B gene is expressed in all epithelial tissues, it is unclear so far whether organs other than intestine are affected in MVID patients. We report a case of an infant with MVID who presented liver dysfunction, hematuria, and Pneumocystis jiroveci pneumonia during the course of the disease. It is discussed whether extraintestinal manifestations in this patient are secondary consequences of MVID or might be features of the disease associated with altered MYO5B function. Conclusions: MVID is classically included in the differential diagnosis of congenital diarrhea of secretory type. Recent advances in our knowledge regarding the role of myosin Vb in the pathophysiology of MVID is expected to clarify the clinical spectrum of the disease and the possible primary involvement of organs other than intestine.


Myosin Vb MVID Neonatal diarrhea Hematuria Liver disease Lung Pneumocystis jiroveci 


  1. 1.
    Cutz E, Sherman PM, Davidson GP (1997) Enteropathies associated with protracted diarrhea of infancy: clinicopathological features, cellular and molecular mechanisms. Pediatr Pathol Lab Med 17:335–368PubMedCrossRefGoogle Scholar
  2. 2.
    Fan GH, Lapierre LA, Goldenring JR, Sai J, Richmond A (2004) Rab11-family interacting protein 2 and myosin Vb are required for CXCR2 recycling and receptor-mediated chemotaxis. Mol Biol Cell 15:2456–2469PubMedCrossRefGoogle Scholar
  3. 3.
    Golachowska M, van Dael C, Keuning H, Karrenbeld A, Hoekstra D, Gijsbers C, Benninga M, Rings E, Ijzendoorn S (2012) Myo5b mutations in patients with microvillus inclusion disease presenting with transient renal Fanconi syndrome. J Pediatr Gastroenterol Nutr 54:491–498PubMedCrossRefGoogle Scholar
  4. 4.
    Halac U, Lacaile F, Joly F, Hugot JP, Talbotec C, Colomb V, Ruemmele FM, Goulet O (2011) Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J Pediatr Gastroenterol Nutr 52:460–465PubMedCrossRefGoogle Scholar
  5. 5.
    Kelly DA (2010) Preventing parenteral nutrition liver disease. Early Hum Dev 86:683–687PubMedCrossRefGoogle Scholar
  6. 6.
    Lapierre LA, Kumar R, Hales CM, Navarre J, Bhartur SG, Burnette JO, Provance DW Jr, Mercer JA, Bahler M, Goldenring JR (2001) Myosin vb is associated with plasma membrane recycling systems. Mol Biol Cell 12:1843–1857PubMedCrossRefGoogle Scholar
  7. 7.
    Müller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, Ponstingl H, Partsch J, Rollinghoff B, Kohler H, Berger T, Lenhartz H, Schlenck B, Houwen RJ, Taylor CJ, Zoller H, Lechner S, Goulet O, Utermann G, Ruemmele FM, Huber LA, Janecke AR (2008) MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet 40:1163–1165PubMedCrossRefGoogle Scholar
  8. 8.
    Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, Doschak MR, Cordat E, Alexander RT (2012) The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol Renal Physiol 302:F943–F956PubMedCrossRefGoogle Scholar
  9. 9.
    Phillps AD, Schmitz J (1992) Familial microvillous atrophy: a clinicopathological survey of 23 cases. J Pediatr Gastroenterol Nutr 14:380–396CrossRefGoogle Scholar
  10. 10.
    Ruemmele FM, Schmitz J, Goulet O (2006) Microvillous inclusion disease (microvillous atrophy). Orphanet J Rare Dis 1:22PubMedCrossRefGoogle Scholar
  11. 11.
    Swiatecka-Urban A, Talebian L, Kanno E, Moreau-Marquis S, Coutermarsh B, Hansen K, Karlson KH, Barnaby R, Cheney RE, Langford GM, Fukuda M, Stanton BA (2007) Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J Biol Chem 282:23725–23736PubMedCrossRefGoogle Scholar
  12. 12.
    Terrin G, Tomaiuolo R, Passariello A, Elce A, Amato F, Di Costanzo M, Castaldo G, Canani RB (2012) Congenital diarrheal disorders: an updated diagnostic approach. Int J Mol Sci 13:4168–4185PubMedCrossRefGoogle Scholar
  13. 13.
    Wakabayashi Y, Dutt P, Lippincott-Schwartz J, Arias IM (2005) Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc Natl Acad Sci U S A 102:15087–15092PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tania Siahanidou
    • 1
    • 4
  • Eirini Koutsounaki
    • 1
  • Anna-Venetia Skiathitou
    • 1
  • Kalliopi Stefanaki
    • 2
  • Evangelos Marinos
    • 3
  • Ioanna Panajiotou
    • 1
  • Giorgos Chouliaras
    • 1
  1. 1.First Department of PediatricsAthens University Medical SchoolAthensGreece
  2. 2.Department of Pathology“Aghia Sophia” Children’s HospitalAthensGreece
  3. 3.Laboratory of Histology and Embryology, Medical SchoolUniversity of AthensAthensGreece
  4. 4.Neonatal Unit, First Department of PediatricsAthens University Medical School, “Aghia Sophia” Children’s HospitalAthensGreece

Personalised recommendations