European Journal of Pediatrics

, Volume 172, Issue 3, pp 305–316 | Cite as

Biomarkers of acute kidney injury in neonatal encephalopathy

  • DU Sweetman
  • EJ Molloy


Acute kidney injury (AKI) is a common complication of neonatal encephalopathy (NE). The accurate diagnosis of neonatal AKI, irrespective of the cause, relies on suboptimal methods such as identification of rising serum creatinine, decreased urinary output and glomerular filtration rate. Studies of AKI biomarkers in adults and children have shown that biomarkers can improve the early diagnosis of AKI. Hypoxia–ischaemia is the proposed aetiological basis of AKI in both NE and cardiopulmonary bypass (CPB). However, there is a paucity of studies examining the role of AKI biomarkers specifically in NE. Urinary cystatin C (CysC), neutrophil gelatinase-associated lipocalin (NGAL), interleukin-18, kidney injury molecule-1, liver-type fatty acid-binding protein, serum CysC and serum NGAL all show good ability to predict early AKI in a heterogeneous critically ill neonatal population including infants post-CPB. Moreover, serum and urinary NGAL and urinary CysC are early predictors of AKI secondary to NE. These findings are promising and open up the possibility of biomarkers playing a significant role in the early diagnosis and treatment of NE-related AKI. There is an urgent need to explore the role of AKI biomarkers in infants with NE as establishing the diagnosis of AKI earlier may allow more timely intervention with potential for improving long-term outcome.


Hypoxic–ischaemic encephalopathy Neutrophil gelatinase-associated lipocalin Cystatin C Interleukin-18 Kidney injury molecule-1 Liver-type fatty acid-binding protein 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aggarwal A, Kumar P, Chowdhary G, Majumdar S, Narang A (2005) Evaluation of renal functions in asphyxiated newborns. J Trop Pediatr 51(5):295–299PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Ismaili Z, Palijan A, Zappitelli M (2011) Biomarkers of acute kidney injury in children: discovery, evaluation, and clinical application. Pediatr Nephrol 26(1):29–40PubMedCrossRefGoogle Scholar
  3. 3.
    Armangil D, Yurdakok M, Canpolat FE, Korkmaz A, Yigit S, Tekinalp G (2008) Determination of reference values for plasma cystatin C and comparison with creatinine in premature infants. Pediatr Nephrol 23(11):2081–2083PubMedCrossRefGoogle Scholar
  4. 4.
    Askenazi D (2012) Are we ready for the clinical use of novel acute kidney injury biomarkers? Pediatr Nephrol 27(9):1423–1425PubMedCrossRefGoogle Scholar
  5. 5.
    Askenazi DJ, Ambalavanan N, Goldstein SL (2009) Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol 24(2):265–274PubMedCrossRefGoogle Scholar
  6. 6.
    Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Parwar P, Sonjara S, Ambalavanan N (2012) Urine biomarkers predict acute kidney injury in newborns. J Pediatr 161(2):270–5PubMedCrossRefGoogle Scholar
  7. 7.
    Askenazi DJ, Koralkar R, Levitan EB, Goldstein SL, Devarajan P, Khandrika S, Mehta RL, Ambalavanan N (2011) Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr Res 70(3):302–306PubMedCrossRefGoogle Scholar
  8. 8.
    Bahar A, Yilmaz Y, Unver S, Gocmen I, Karademir F (2003) Reference values of umbilical cord and third-day cystatin C levels for determining glomerular filtration rates in newborns. J Int Med Res 31(3):231–235PubMedGoogle Scholar
  9. 9.
    Cataldi L, Mussap M, Bertelli L, Ruzzante N, Fanos V, Plebani M (1999) Cystatin C in healthy women at term pregnancy and in their infant newborns: relationship between maternal and neonatal serum levels and reference values. Am J Perinatol 16(6):287–295PubMedCrossRefGoogle Scholar
  10. 10.
    Dammann O, Ferriero D, Gressens P (2011) Neonatal encephalopathy or hypoxic–ischemic encephalopathy? Appropriate terminology matters. Pediatr Res 70(1):1–2PubMedCrossRefGoogle Scholar
  11. 11.
    Demirel G, Celik IH, Canpolat FE, Erdeve O, Biyikli Z, Dilmen U (2012) Reference values of serum cystatin C in very low birth weight premature infants. Acta Paediatr. Sept 27 [Epub ahead of print]Google Scholar
  12. 12.
    Devarajan P (2007) Emerging biomarkers of acute kidney injury. Contrib Nephrol 156:203–212PubMedCrossRefGoogle Scholar
  13. 13.
    Durkan AM, Alexander RT (2011) Acute kidney injury post neonatal asphyxia. J Pediatr 158(2 Suppl):e29–33PubMedGoogle Scholar
  14. 14.
    Ferguson MA, Vaidya VS, Waikar SS, Collings FB, Sunderland KE, Gioules CJ, Bonventre JV (2010) Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int 77(8):708–714PubMedCrossRefGoogle Scholar
  15. 15.
    Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82(1):71–75PubMedCrossRefGoogle Scholar
  16. 16.
    Gadepalli SK, Selewski DT, Drongowski RA, Mychaliska GB (2011) Acute kidney injury in congenital diaphragmatic hernia requiring extracorporeal life support: an insidious problem. J Pediatr Surg 46(4):630–635PubMedCrossRefGoogle Scholar
  17. 17.
    Gouyon JB, Guignard JP (2000) Management of acute renal failure in newborns. Pediatr Nephrol 14(10–11):1037–1044PubMedCrossRefGoogle Scholar
  18. 18.
    Gupta BD, Sharma P, Bagla J, Parakh M, Soni JP (2005) Renal failure in asphyxiated neonates. Indian Pediatr 42(9):928–934PubMedGoogle Scholar
  19. 19.
    Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54(6):1012–1024PubMedCrossRefGoogle Scholar
  20. 20.
    Haase M, Bellomo R, Story D, Davenport P, Haase-Fielitz A (2008) Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study. Crit Care 12(4):R96PubMedCrossRefGoogle Scholar
  21. 21.
    Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62(1):237–244PubMedCrossRefGoogle Scholar
  22. 22.
    Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73(7):863–869PubMedCrossRefGoogle Scholar
  23. 23.
    Hankins GD, Koen S, Gei AF, Lopez SM, Van Hook JW, Anderson GD (2002) Neonatal organ system injury in acute birth asphyxia sufficient to result in neonatal encephalopathy. Obstet Gynecol 99(5 Pt 1):688–691PubMedCrossRefGoogle Scholar
  24. 24.
    Harmoinen A, Ylinen E, Ala-Houhala M, Janas M, Kaila M, Kouri T (2000) Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 15(1–2):105–108PubMedCrossRefGoogle Scholar
  25. 25.
    Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66(3):1115–1122PubMedCrossRefGoogle Scholar
  26. 26.
    Hoseini R, Otukesh H, Rahimzadeh N, Hoseini S (2012) Glomerular function in neonates. Iran J Kidney Dis 6(3):166–172PubMedGoogle Scholar
  27. 27.
    Hsu CW, Symons JM (2010) Acute kidney injury: can we improve prognosis? Pediatr Nephrol 25(12):2401–2412PubMedCrossRefGoogle Scholar
  28. 28.
    Huynh TK, Bateman DA, Parravicini E, Lorenz JM, Nemerofsky SL, Sise ME, Bowman TM, Polesana E, Barasch JM (2009) Reference values of urinary neutrophil gelatinase-associated lipocalin in very low birth weight infants. Pediatr Res 66(5):528–532PubMedCrossRefGoogle Scholar
  29. 29.
    Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286(3):F552–563PubMedCrossRefGoogle Scholar
  30. 30.
    Kamijo A, Sugaya T, Hikawa A, Yamanouchi M, Hirata Y, Ishimitsu T, Numabe A, Takagi M, Hayakawa H, Tabei F, Sugimoto T, Mise N, Omata M, Kimura K (2006) Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease. Mol Cell Biochem 284(1–2):175–182PubMedCrossRefGoogle Scholar
  31. 31.
    Karlowicz MG, Adelman RD (1995) Nonoliguric and oliguric acute renal failure in asphyxiated term neonates. Pediatr Nephrol 9(6):718–722PubMedCrossRefGoogle Scholar
  32. 32.
    Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P (2011) Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol 58(22):2301–2309PubMedCrossRefGoogle Scholar
  33. 33.
    Krawczeski CD, Vandevoorde RG, Kathman T, Bennett MR, Woo JG, Wang Y, Griffiths RE, Devarajan P (2010) Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin J Am Soc Nephrol 5(9):1552–1557PubMedCrossRefGoogle Scholar
  34. 34.
    Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P (2011) Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr 158(6):1009–1015 e1001PubMedCrossRefGoogle Scholar
  35. 35.
    Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, Schibler KR (2008) Urinary NGAL in premature infants. Pediatr Res 64(4):423–428PubMedCrossRefGoogle Scholar
  36. 36.
    Leviton A, Nelson KB (1992) Problems with definitions and classifications of newborn encephalopathy. Pediatr Neurol 8(2):85–90PubMedCrossRefGoogle Scholar
  37. 37.
    Li Y, Fu C, Zhou X, Xiao Z, Zhu X, Jin M, Li X, Feng X (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27(5):851–860PubMedCrossRefGoogle Scholar
  38. 38.
    Liang XL, Liu SX, Chen YH, Yan LJ, Li H, Xuan HJ, Liang YZ, Shi W (2010) Combination of urinary kidney injury molecule-1 and interleukin-18 as early biomarker for the diagnosis and progressive assessment of acute kidney injury following cardiopulmonary bypass surgery: a prospective nested case–control study. Biomarkers 15(4):332–339PubMedCrossRefGoogle Scholar
  39. 39.
    Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, MacKinnon RW, Li L, Balakrishnan VS, Pereira BJ, Bonventre JV, Jaber BL (2007) Urinary N-acetyl-beta-(d)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 18(3):904–912PubMedCrossRefGoogle Scholar
  40. 40.
    Martin-Ancel A, Garcia-Alix A, Gaya F, Cabanas F, Burgueros M, Quero J (1995) Multiple organ involvement in perinatal asphyxia. J Pediatr 127(5):786–793PubMedCrossRefGoogle Scholar
  41. 41.
    Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW, Edelstein CL (2001) Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107(9):1145–1152PubMedCrossRefGoogle Scholar
  42. 42.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365(9466):1231–1238PubMedCrossRefGoogle Scholar
  43. 43.
    Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, Devarajan P (2006) Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 21(6):856–863PubMedCrossRefGoogle Scholar
  44. 44.
    Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14(10):2534–2543PubMedCrossRefGoogle Scholar
  45. 45.
    Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24(3):307–315PubMedCrossRefGoogle Scholar
  46. 46.
    Montini G, Cosmo L, Amici G, Mussap M, Zacchello G (2001) Plasma cystatin C values and inulin clearances in premature neonates. Pediatr Nephrol 16(5):463–465PubMedCrossRefGoogle Scholar
  47. 47.
    Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D'Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin–siderophore–iron complex rescues the kidney from ischemia–reperfusion injury. J Clin Invest 115(3):610–621PubMedGoogle Scholar
  48. 48.
    Mussap M, Degrandi R, Fravega M, Fanos V (2010) Acute kidney injury in critically ill infants: the role of urine neutrophil gelatinase-associated lipocalin (NGAL). J Matern Fetal Neonatal Med 23(Suppl 3):70–72PubMedCrossRefGoogle Scholar
  49. 49.
    Nakamura T, Sugaya T, Koide H (2009) Urinary liver-type fatty acid-binding protein in septic shock: effect of polymyxin B-immobilized fiber hemoperfusion. Shock 31(5):454–459PubMedCrossRefGoogle Scholar
  50. 50.
    Nelson KB (2007) Is it HIE? And why that matters. Acta Paediatr 96(8):1113–1114PubMedCrossRefGoogle Scholar
  51. 51.
    Nolte S, Mueller B, Pringsheim W (1991) Serum alpha 1-microglobulin and beta 2-microglobulin for the estimation of fetal glomerular renal function. Pediatr Nephrol 5(5):573–577PubMedCrossRefGoogle Scholar
  52. 52.
    Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16(10):3046–3052PubMedCrossRefGoogle Scholar
  53. 53.
    Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43(3):405–414PubMedCrossRefGoogle Scholar
  54. 54.
    Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 70(1):199–203PubMedCrossRefGoogle Scholar
  55. 55.
    Perlman JM, Tack ED (1988) Renal injury in the asphyxiated newborn infant: relationship to neurologic outcome. J Pediatr 113(5):875–879PubMedCrossRefGoogle Scholar
  56. 56.
    Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, Noiri E, Devarajan P (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73(4):465–472PubMedCrossRefGoogle Scholar
  57. 57.
    Sarafidis K, Tsepkentzi E, Agakidou E, Diamanti E, Taparkou A, Soubasi V, Papachristou F, Drossou V (2012) Serum and urine acute kidney injury biomarkers in asphyxiated neonates. Pediatr Nephrol 27(9):1575–82PubMedCrossRefGoogle Scholar
  58. 58.
    Schmidt-Ott KM, Mori K, Kalandadze A, Li JY, Paragas N, Nicholas T, Devarajan P, Barasch J (2006) Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens 15(4):442–449PubMedCrossRefGoogle Scholar
  59. 59.
    Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P (2003) Differential gene expression following early renal ischemia/reperfusion. Kidney Int 63(5):1714–1724PubMedCrossRefGoogle Scholar
  60. 60.
    Trof RJ, Di Maggio F, Leemreis J, Groeneveld AB (2006) Biomarkers of acute renal injury and renal failure. Shock 26(3):245–253PubMedCrossRefGoogle Scholar
  61. 61.
    Tsukahara H, Sugaya T, Hayakawa K, Mori Y, Hiraoka M, Hata A, Mayumi M (2005) Quantification of L-type fatty acid binding protein in the urine of preterm neonates. Early Hum Dev 81(7):643–646PubMedCrossRefGoogle Scholar
  62. 62.
    Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV (2006) Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290(2):F517–529PubMedCrossRefGoogle Scholar
  63. 63.
    VandeVoorde RG et al (2006) Serum NGAL and cystatin C as predictive biomarkers for acute kidney injury. J Am Soc Nephrol 17:404AGoogle Scholar
  64. 64.
    Wagener G, Jan M, Kim M, Mori K, Barasch JM, Sladen RN, Lee HT (2006) Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology 105(3):485–491PubMedCrossRefGoogle Scholar
  65. 65.
    Washburn KK, Zappitelli M, Arikan AA, Loftis L, Yalavarthy R, Parikh CR, Edelstein CL, Goldstein SL (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23(2):566–572PubMedCrossRefGoogle Scholar
  66. 66.
    Wasilewska A, Taranta-Janusz K, Debek W, Zoch-Zwierz W, Kuroczycka-Saniutycz E (2011) KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol 26(4):579–586PubMedCrossRefGoogle Scholar
  67. 67.
    Zaffanello M, Franchini M, Fanos V (2007) Is serum cystatin-C a suitable marker of renal function in children? Ann Clin Lab Sci 37(3):233–240PubMedGoogle Scholar
  68. 68.
    Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL (2007) Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11(4):R84PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Z, Lu B, Sheng X, Jin N (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 58(3):356–365PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of NeonatologyNational Maternity HospitalDublinIreland
  2. 2.Department of PaediatricsRoyal College of Surgeons in IrelandDublinIreland
  3. 3.NeonatologyOur Lady’s Children’s HospitalDublinIreland
  4. 4.UCD School of Medicine and Medical SciencesUniversity College DublinDublinIreland

Personalised recommendations