European Journal of Pediatrics

, Volume 169, Issue 2, pp 149–164 | Cite as

Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children

  • Jan Philipp Schuchardt
  • Michael Huss
  • Manuela Stauss-Grabo
  • Andreas Hahn
Review

Abstract

ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) play a central role in the normal development and functioning of the brain and central nervous system. Long-chain PUFAs (LC-PUFAs) such as eicosapentaenoic acid (EPA, C20:5ω-3), docosahexaenoic acid (DHA, C22:6ω-3) and arachidonic acid (AA, C20:4ω-6), in particular, are involved in numerous neuronal processes, ranging from effects on membrane fluidity to gene expression regulation. Deficiencies and imbalances of these nutrients, not only during the developmental phase but throughout the whole life span, have significant effects on brain function. Numerous observational studies have shown a link between childhood developmental disorders and ω-6:ω-3 fatty acid imbalances. For instance, neurocognitive disorders such as attention-deficit hyperactivity disorder (ADHD), dyslexia, dyspraxia and autism spectrum disorders are often associated with a relative lack of ω-3 fatty acids. In addition to a high ω-6 fatty acid intake and, in many cases, an insufficient supply of ω-3 fatty acids among the population, evidence is increasing to suggest that PUFA metabolism can be impaired in individuals with ADHD. In this context, PUFA imbalances are being discussed as potential risk factors for neurodevelopmental disorders. Another focus is whether the nutritive PUFA requirements—especially long-chain ω-3 fatty acid requirements—are higher among some individuals. Meanwhile, several controlled studies investigated the clinical benefits of LC-PUFA supplementation in affected children and adolescents, with occasionally conflicting results.

Keywords

Omega-3 fatty acids EPA DHA Fatty acid metabolism Childhood developmental disorders Attention-deficit hyperactivity disorder (ADHD) 

Abbreviations

ABC

Aberrant Behaviour Checklist

COX

Cyclooxygenase

DSM-IV

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition

CBCL

Child Behaviour Checklist

CDI

Children’s Depression Inventory

CDRS

Children’s Depression Rating Scale

CGI

Clinical Global Impression

CTRSL

Conners’ Teacher Rating Scales, Long Version

FADS

Fatty acid desaturase

LOX

Lipoxygenase

PL

Phospholipase A2

PUFAs

Polyunsaturated fatty acids

IVA/CPT

Intermediate Visual and Auditory/Continuous Performance Test

LC-PUFAs

Long-chain polyunsaturated fatty acids

TOVA

Test of Variables of Attention

Notes

Disclosures

JP Schuchardt, A Hahn and M Huss work as consultants for companies which also produce and merchandise fatty acid supplements. The contents of this publication do not mention trade names or commercial products. The costs of publication of this article were neither defrayed by any fish-oil-producing- or merchandising- nor by any other company.

References

  1. 1.
    Ahmad SO, Park JH, Radel JD et al (2008) Reduced numbers of dopamine neurons in the substantia nigra pars compacta and ventral tegmental area of rats fed an n − 3 polyunsaturated fatty acid-deficient diet: a stereological study. Neurosci Lett 438(3):303–307PubMedGoogle Scholar
  2. 2.
    Alessandri JM, Guesnet P, Vancassel S (2004) Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 44(6):509–538PubMedGoogle Scholar
  3. 3.
    Aman MG, Mitchell EA, Turbott SH (1987) The effects of essential fatty acid supplementation by Efamol in hyperactive children. J Abnorm Child Psychol 15(1):75–90PubMedGoogle Scholar
  4. 4.
    Amminger GP, Berger GE, Schafer MR et al (2007) Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol Psychiatry 61(4):551–553PubMedGoogle Scholar
  5. 5.
    Antalis CJ, Stevens LJ, Campbell M et al (2006) Omega-3 fatty acid status in attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 75(4–5):299–308PubMedGoogle Scholar
  6. 6.
    Arnold LE, Kleykamp D, Votolato NA et al (1989) Gamma-linolenic acid for attention-deficit hyperactivity disorder: placebo-controlled comparison to d-amphetamine. Biol Psychiatry 25(2):222–228PubMedGoogle Scholar
  7. 7.
    Arnold LE, Kleykamp D, Votolato N et al (1994) Potential link between dietary intake of fatty acids and behavior: pilot exploration of serum-lipids in attention-deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 4:171–182Google Scholar
  8. 8.
    Arnold LE, DiSilvestro RA (2005) Zinc in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 15(4):619–627PubMedGoogle Scholar
  9. 9.
    Barcelo-Coblijn G, Hogyes E, Kitajka K et al (2003) Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proc Natl Acad Sci USA 100(20):11321–11326PubMedGoogle Scholar
  10. 10.
    Bell JG, MacKinlay EE, Dick JR et al (2004) Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot Essent Fatty Acids 71(4):201–204PubMedGoogle Scholar
  11. 11.
    Bennett CN, Horrobin DF (2000) Gene targets related to phospholipid and fatty acid metabolism in schizophrenia and other psychiatric disorders: an update. Prostaglandins Leukot Essent Fatty Acids 63(1–2):47–59PubMedGoogle Scholar
  12. 12.
    Berger A, Mutch DM, German JB (2002) Dietary effects of arachidonate-rich fungal oil and fish oil on murine hepatic and hippocampal gene expression. Lipids Health Dis 1:2PubMedGoogle Scholar
  13. 13.
    Biederman J, Munir K, Knee D et al (1987) High rate of affective disorders in probands with attention deficit disorder and in their relatives: a controlled family study. Am J Psychiatry 144(3):330–333PubMedGoogle Scholar
  14. 14.
    Birch EE, Garfield S, Hoffman DR (2000) A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 42(3):174–181PubMedGoogle Scholar
  15. 15.
    Birch EE, Hoffman DR, Castañeda YS (2002) A randomized controlled trial of long-chain polyunsaturated fatty acid supplementation of formula in term infants after weaning at 6 wk of age. Am J Clin Nutr 75(3):570–580PubMedGoogle Scholar
  16. 16.
    Bourre JM, Pascal G, Durand G et al (1984) Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n − 3 fatty acids. J Neurochem 43(2):342–348PubMedGoogle Scholar
  17. 17.
    Bourre JM, Dumont O, Piciotti M et al (1991) Essentiality of omega 3 fatty acids for brain structure and function. World Rev Nutr Diet 66:103–117PubMedGoogle Scholar
  18. 18.
    Bourre JM, Dumont O, Durand G (1993) Brain phospholipids as dietary source of (n − 3) polyunsaturated fatty acids for nervous tissue in the rat. J Neurochem 60(6):2018–2028PubMedGoogle Scholar
  19. 19.
    Brenna JT (2002) Efficiency of conversion of alpha-linolenic acid to long chain n − 3 fatty acids in man. Curr Opin Clin Nutr Metab Care 5(2):127–132PubMedGoogle Scholar
  20. 20.
    British Nutrition Foundation (BNF) (1995) n − 3 fatty acids and health. Briefing paper. BNF, LondonGoogle Scholar
  21. 21.
    Brookes KJ, Chen W, Xu X et al (2006) Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorder. Biol Psychiatry 60(10):1053–1061PubMedGoogle Scholar
  22. 22.
    Brue AW, Oakland TD, Evans RA (2001) The use of a dietary supplement combination and an essential fatty acid as an alternative and complementary treatment for children with attention-deficit/hyperactivity disorder. Sci Rev Altern Med 5(4):187–194Google Scholar
  23. 23.
    Burdge GC, Wootton SA (2002) Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr 88(4):411–420PubMedGoogle Scholar
  24. 24.
    Burdge GC, Jones AE, Wootton SA (2002) Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr 88(4):355–363PubMedCrossRefGoogle Scholar
  25. 25.
    Burdge GC, Calder PC (2005) Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581–597PubMedGoogle Scholar
  26. 26.
    Busch B (2007) Polyunsaturated fatty acid supplementation for ADHD? Fishy, fascinating, and far from clear. J Dev Behav Pediatr 28(2):139–144PubMedGoogle Scholar
  27. 27.
    Calderon F, Kim HY (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 90(4):979–988PubMedGoogle Scholar
  28. 28.
    Castellanos FX (1997) Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clin Pediatr (Phila) 36(7):381–393Google Scholar
  29. 29.
    Chalon S, Delion-Vancassel S, Belzung C (1998) Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J Nutr 128(12):2512–2519PubMedGoogle Scholar
  30. 30.
    Chalon S, Vancassel S, Zimmer L (2001) Polyunsaturated fatty acids and cerebral function: focus on monoaminergic neurotransmission. Lipids 36(9):937–944PubMedGoogle Scholar
  31. 31.
    Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75(4–5):259–269PubMedGoogle Scholar
  32. 32.
    Chen JR, Hsu SF, Hsu CD et al (2004) Dietary patterns and blood fatty acid composition in children with attention-deficit hyperactivity disorder in Taiwan. J Nutr Biochem 15(8):467–472PubMedGoogle Scholar
  33. 33.
    Clandinin MT, Chappell JE, Leong S et al (1980) Extrauterine fatty acid accretion in infant brain: implications for fatty acid requirements. Early Hum Dev 4(2):131–138PubMedGoogle Scholar
  34. 34.
    Colter AL, Cutler C, Meckling KA (2008) Fatty acid status and behavioural symptoms of attention deficit hyperactivity disorder in adolescents: a case-control study. Nutr J 7:8PubMedGoogle Scholar
  35. 35.
    Crawford MA (1993) The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr 57(5 Suppl):703S–709SPubMedGoogle Scholar
  36. 36.
    D-A-CH, Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährung (SGE), Schweizerische Vereinigung für Ernährung (SVE), (2008) Referenzwerte für die Nährstoffzufuhr. Umschau/Braus, Frankfurt am MainGoogle Scholar
  37. 37.
    Delion S, Chalon S, Herault J et al (1994) Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. J Nutr 124(12):2466–2476PubMedGoogle Scholar
  38. 38.
    Delion S, Chalon S, Guilloteau D et al (1996) alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. J Neurochem 66(4):1582–1591PubMedCrossRefGoogle Scholar
  39. 39.
    DGE, Deutsche Gesellschaft für Ernährung (2004) Ernährungsbericht 2004. Deutsche Gesellschaft für Ernährung e.V., BonnGoogle Scholar
  40. 40.
    Ernst E (1994) Effects of n − 3 fatty acids on blood rheology. J Int Med 225:129–132Google Scholar
  41. 41.
    Faraone SV, Biederman J (1998) Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiatry 44(10):951–958PubMedGoogle Scholar
  42. 42.
    Freeman MP, Hibbeln JR, Wisner KL et al (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67(12):1954–1967PubMedGoogle Scholar
  43. 43.
    Galland L (1985) Impaired essential fatty acid metabolism in latent tetany. Magnesium 4(5–6):333–338PubMedGoogle Scholar
  44. 44.
    Hahn A, Ströhle A (2004) Prävention degenerativer Erkrankungen, ω-3-Fettsäuren. Chem unserer Zeit 38:310-318Google Scholar
  45. 45.
    Hahn A, Ströhle A, Wolters M (2006) Ernährung—Physiologische Grundlagen, Prävention, Therapie. 2. Auflage, Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  46. 46.
    Hahn A, Ströhle A, Wolters M (2007) Ernährung bei Erkrankungen des rheumatischen Formenkreises. Medizinische Monatsschrift für Pharmazeuten 30:138-146PubMedGoogle Scholar
  47. 47.
    Hansen AE, Haggard ME, Boelsche AN et al (1958) Essential fatty acids in infant nutrition. III. Clinical manifestations of linoleic acid deficiency. J Nutr 66(4):565–576PubMedGoogle Scholar
  48. 48.
    Harding KL, Judah RD, Gant C (2003) Outcome-based comparison of Ritalin versus food-supplement treated children with AD/HD. Altern Med Rev 8(3):319–330PubMedGoogle Scholar
  49. 49.
    Hellgren L, Gillberg IC, Bagenholm A et al (1994) Children with deficits in attention, motor control and perception (DAMP) almost grown up: psychiatric and personality disorders at age 16 years. J Child Psychol Psychiatry 35(7):1255–1271PubMedGoogle Scholar
  50. 50.
    Hibbeln JR, Bissette G, Umhau JC et al (2004) Omega-3 status and cerebrospinal fluid corticotrophin releasing hormone in perpetrators of domestic violence. Biol Psychiatry 56(11):895–897PubMedGoogle Scholar
  51. 51.
    Hirayama S, Hamazaki T, Terasawa K (2004) Effect of docosahexaenoic acid-containing food administration on symptoms of attention-deficit/hyperactivity disorder—a placebo-controlled double-blind study. Eur J Clin Nutr 58(3):467–473PubMedGoogle Scholar
  52. 52.
    Holte LL, Separovic F, Gawrisch K (1996) Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids 31:S199–S203PubMedGoogle Scholar
  53. 53.
    Horrobin DF, Glen AI, Hudson CJ (1995) Possible relevance of phospholipid abnormalities and genetic interactions in psychiatric disorders: the relationship between dyslexia and schizophrenia. Med Hypotheses 45(6):605–613PubMedGoogle Scholar
  54. 54.
    Huang YS, Horrobin DF (1987) Sex differences in n − 3 and n − 6 fatty acid metabolism in EFA-depleted rats. Proc Soc Exp Biol Med 185(3):291–296PubMedGoogle Scholar
  55. 55.
    Innis SM (2005) Essential fatty acid transfer and fetal development. Placenta 26:S70–S75PubMedGoogle Scholar
  56. 56.
    Jensen PS (2000) ADHD: current concepts on etiology, pathophysiology, and neurobiology. Child Adolesc Psychiatr Clin N Am 9(3):557–572PubMedGoogle Scholar
  57. 57.
    Johnson M, Östlund S, Fransson G et al (2008) Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder: a randomized placebo-controlled trial in children and adolescents. J Atten Disord. doi:10.1177/1087054708316261 Google Scholar
  58. 58.
    Joshi K, Lad S, Kale M et al (2006) Supplementation with flax oil and vitamin C improves the outcome of attention deficit hyperactivity disorder (ADHD). Prostagland Leukotri Essen Fatty Acids 74:17–21Google Scholar
  59. 59.
    Judge MP, Harel O, Lammi-Keefe CJ (2007) A docosahexaenoic acid-functional food during pregnancy benefits infant visual acuity at four but not six months of age. Lipids 42(2):117–122PubMedGoogle Scholar
  60. 60.
    Jump DB (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol 13(2):155–164PubMedGoogle Scholar
  61. 61.
    Kamada T, Yamashita T, Baba Y et al (1986) Dietary sardine oil increases erythrocyte membrane fluidity in diabetic patients. Diabetes 35:604–611PubMedGoogle Scholar
  62. 62.
    Kelley DS, Taylor PC, Nelson GJ et al (1999) Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids 34(4):317–324PubMedGoogle Scholar
  63. 63.
    Kim HY, Akbar M, Kim KY (2001) Inhibition of neuronal apoptosis by polyunsaturated fatty acids. J Mol Neurosci 16(2–3):223–227PubMedGoogle Scholar
  64. 64.
    Kim HY, Akbar M, Lau A (2003) Effects of docosapentaenoic acid on neuronal apoptosis. Lipids 38(4):453–457PubMedGoogle Scholar
  65. 65.
    Kitajka K, Puskas LG, Zvara A et al (2002) The role of n − 3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n − 3 fatty acids. Proc Natl Acad Sci USA 99(5):2619–2624PubMedGoogle Scholar
  66. 66.
    Kitajka K, Sinclair AJ, Weisinger RS (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci USA 101(30):10931–10936PubMedGoogle Scholar
  67. 67.
    Knickmeyer R, Baron-Cohen S, Raggatt P et al (2005) Foetal testosterone, social relationships, and restricted interests in children. J Child Psychol Psychiatry 46(2):198–210PubMedGoogle Scholar
  68. 68.
    Knickmeyer RC, Baron-Cohen S (2006) Fetal testosterone and sex differences in typical social development and in autism. J Child Neurol 21(10):825–845PubMedGoogle Scholar
  69. 69.
    Kodas E, Galineau L, Bodard S et al (2004) Serotoninergic neurotransmission is affected by n − 3 polyunsaturated fatty acids in the rat. J Neurochem 89(3):695–702PubMedGoogle Scholar
  70. 70.
    Kohlmeier L (1995) Future of dietary exposure assessment. Am J Clin Nutr 61(3 Suppl):702S–709SPubMedGoogle Scholar
  71. 71.
    Koletzko B, Cetin I, Brenna JT et al (2007) Dietary fat intakes for pregnant and lactating women. Br J Nutr 98(5):873–877PubMedGoogle Scholar
  72. 72.
    Koletzko B, Demmelmair H, Schaeffer L et al (2008) Genetically determined variation in polyunsaturated fatty acid metabolism may result in different dietary requirements. Nestle Nutr Workshop Ser Pediatr Program 62:35–49PubMedGoogle Scholar
  73. 73.
    Koletzko B, Lien E, Agostoni C et al (2008) The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med 36(1):5–14PubMedGoogle Scholar
  74. 74.
    Lee A (2001) Membrane structure. Curr Biol 11(20):R811–R814PubMedGoogle Scholar
  75. 75.
    Litman BJ, Niu SL, Polozova A (2001) The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J Mol Neurosci 16:237–242PubMedGoogle Scholar
  76. 76.
    Marra CA, de Alaniz MJ (1989) Influence of testosterone administration on the biosynthesis of unsaturated fatty acids in male and female rats. Lipids 24(12):1014–1019PubMedGoogle Scholar
  77. 77.
    Martinez M (1992) Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 120(4 Pt 2):S129–S138PubMedGoogle Scholar
  78. 78.
    Martinez M (1994) Polyunsaturated fatty acids in the developing human brain, red cells and plasma: influence of nutrition and peroxisomal disease. World Rev Nutr Diet 75:70–78PubMedGoogle Scholar
  79. 79.
    Mirnikjoo B, Brown SE, Kim HF et al (2001) Protein kinase inhibition by omega-3 fatty acids. J Biol Chem 276(14):10888–10896PubMedGoogle Scholar
  80. 80.
    Mitchell DC, Straume M, Litman BJ (1992) Role of sn-1-saturated, sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I/metarhodopsin II equilibrium. Biochemistry 31:662–670PubMedGoogle Scholar
  81. 81.
    Mitchell DC, Litman BJ (1998) Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys J 74:879–891PubMedGoogle Scholar
  82. 82.
    Mitchell DC, Niu SL, Litman BJ (2003) DHA-rich phospholipids optimize G-protein-coupled signaling. J Pediatr 143(4 Suppl):S80–S86PubMedGoogle Scholar
  83. 83.
    Mitchell EA, Lewis S, Cutler DR (1983) Essential fatty acids and maladjusted behaviour in children. Prostaglandins Leukot Med 12(3):281–287PubMedGoogle Scholar
  84. 84.
    Mitchell EA, Aman MG, Turbott SH et al (1987) Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin Pediatr (Phila) 26(8):406–411Google Scholar
  85. 85.
    Nemets H, Nemets B, Apter A et al (2006) Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry 163(6):1098–1100PubMedGoogle Scholar
  86. 86.
    Neuringer M, Connor WE, Van Petten C et al (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 73(1):272–276PubMedGoogle Scholar
  87. 87.
    Neuringer M, Connor WE, Lin DS et al (1986) Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci USA 83(11):4021–4025PubMedGoogle Scholar
  88. 88.
    Neuringer M, Reisbick S, Janowsky J (1994) The role of n − 3 fatty acids in visual and cognitive development: current evidence and methods of assessment. J Pediatr 125(5 Pt 2):S39–S47PubMedGoogle Scholar
  89. 89.
    Olsen SF, Secher NJ (2002) Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. BMJ 324(7335):7447Google Scholar
  90. 90.
    Orr SK, Bazinet RP (2008) The emerging role of docosahexaenoic acid in neuroinflammation. Curr Opin Investig Drugs 9(7):735–743PubMedGoogle Scholar
  91. 91.
    Pawlosky RJ, Hibbeln JR, Novotny JA et al (2001) Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res 42(8):1257–1265PubMedGoogle Scholar
  92. 92.
    Peet M, Stokes C (2005) Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs 65(8):1051–1059PubMedGoogle Scholar
  93. 93.
    Polancyk G, de Lima M, Horta B et al (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948Google Scholar
  94. 94.
    Posey DJ, McDougle CJ (2001) Pharmacotherapeutic management of autism. Expert Opin Pharmacother 2(4):587–600PubMedGoogle Scholar
  95. 95.
    Rasmussen P, Gillberg C (2000) Natural outcome of ADHD with developmental coordination disorder at age 22 years: a controlled, longitudinal, community-based study. J Am Acad Child Adolesc Psychiatry 39(11):1424–1431PubMedGoogle Scholar
  96. 96.
    Richardson AJ, Ross MA (2000) Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivity disorder, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot Essent Fatty Acids 63(1–2):1–9PubMedGoogle Scholar
  97. 97.
    Richardson AJ, Puri BK (2000) The potential role of fatty acids in attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 63(1–2):79–87PubMedGoogle Scholar
  98. 98.
    Richardson AJ, Puri BK (2002) A randomized double-blind, placebocontrolled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog Neuropsychopharm Biol Psychiatry 26:233–239Google Scholar
  99. 99.
    Richardson AJ (2004) Long-chain polyunsaturated fatty acids in childhood developmental and psychiatric disorders. Lipids 39(12):1215–1222PubMedGoogle Scholar
  100. 100.
    Richardson AJ, Montgomery P (2005) The Oxford–Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics 115(5):1360–1366PubMedGoogle Scholar
  101. 101.
    Rojas CV, Martínez JI, Flores I et al (2003) Gene expression analysis in human fetal retinal explants treated with docosahexaenoic acid. Invest Ophthalmol Vis Sci 44(7):3170–3177PubMedGoogle Scholar
  102. 102.
    Ross MA (2000) Could oxidative stress be a factor in neurodevelopmental disorders? Prostaglandins Leukot Essent Fatty Acids 63(1–2):61–63PubMedGoogle Scholar
  103. 103.
    Ross BM, McKenzie I, Glen I et al (2003) Increased levels of ethane, a non-invasive marker of n − 3 fatty acid oxidation, in breath of children with attention deficit hyperactivity disorder. Nutr Neurosci 6(5):277–281PubMedGoogle Scholar
  104. 104.
    Rotstein NP, Politi LE, Aveldaño MI (1998) Docosahexaenoic acid promotes differentiation of developing photoreceptors in culture. Invest Ophthalmol Vis Sci 39(13):2750–2758PubMedGoogle Scholar
  105. 105.
    Rowland AS, Lesesne CA, Abramowitz AJ (2002) The epidemiology of attention-deficit/hyperactivity disorder (ADHD): a public health view. Ment Retard Dev Disabil Res Rev 8(3):162–170PubMedGoogle Scholar
  106. 106.
    Salem N Jr, Kim HY, Yergey JA (1986) Docosahexaenoic acid: membrane function and metabolism. In: Simopolous AP, Kifer RR, Martin RE (eds) Health effects of polyunsaturated fatty acids in seafoods. Academic, New York, pp 319–351Google Scholar
  107. 107.
    Salem N Jr, Pawlosky R, Wegher B et al (1999) In vivo conversion of linoleic acid to arachidonic acid in human adults. Prostaglandins Leukot Essent Fatty Acids 60(5–6):407–410PubMedGoogle Scholar
  108. 108.
    Salvati S, Natali F, Attorri L (2008) Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J Neurosci Res 86(4):776–784PubMedGoogle Scholar
  109. 109.
    Scahill L, Schwab-Stone M (2000) Epidemiology of ADHD in school-age children. Child Adolesc Psychiatr ClinN Am 9(3):541–555Google Scholar
  110. 110.
    Schaeffer L, Gohlke H, Muller M et al (2006) Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 15:1745–1756PubMedGoogle Scholar
  111. 111.
    Schmitt B, Ströhle A, Watkinson BM et al (2002) Wirkstoffe funktioneller Lebensmittel in der Prävention der , Teil 2: ω-3-Fettsäuren—Versorgungssituation und Zufuhrempfehlung, Ernährungs-Umschau 49:223-229Google Scholar
  112. 112.
    Schultz ST, Klonoff-Cohen HS, Wingard DL et al (2006) Breastfeeding, infant formula supplementation, and autistic disorder: the results of a patient survey. Int Breastfeed J 1:16PubMedGoogle Scholar
  113. 113.
    Seung Kim HF, Weeber EJ, Sweatt JD et al (2001) Inhibitory effects of omega-3 fatty acids on protein kinase C activity in vitro. Mol Psychiatry 6(2):246–248PubMedGoogle Scholar
  114. 114.
    Silver LB (2000) Attention-deficit/hyperactivity disorder in adult life. Child Adolesc Psychiatr Clin N Am 9(3):511–523PubMedGoogle Scholar
  115. 115.
    Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8):365–379PubMedGoogle Scholar
  116. 116.
    Sinclair HM (1990) Essential fatty acids: an historical perspective. Biochem Soc Trans 18:756–761PubMedGoogle Scholar
  117. 117.
    Singer P (2000) Was sind, wie wirken ω-3-Fettsäuren? UZV-Verlag, Frankfurt am MainGoogle Scholar
  118. 118.
    Sinn N, Bryan J (2007) Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behaviour problems associated with child ADHD. J Dev Behav Pediatrics 28:82–91Google Scholar
  119. 119.
    Song C, Manku MS, Horrobin DF (2008) Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J Nutr 138(5):954–963PubMedGoogle Scholar
  120. 120.
    Sorgi PJ, Hallowell EM, Hutchins HL et al (2007) Effects of an open-label pilot study with high-dose EPA/DHA concentrates on plasma phospholipids and behavior in children with attention deficit hyperactivity disorder. Nutr J 6:16PubMedGoogle Scholar
  121. 121.
    Stevens LJ, Zentall SS, Deck JL et al (1995) Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am J Clin Nutr 62(4):761–768PubMedGoogle Scholar
  122. 122.
    Stevens LJ, Zentall SS, Abate ML et al (1996) Omega-3 fatty acids in boys with behavior, learning, and health problems. Physiol Behav 59(4–5):915–920PubMedGoogle Scholar
  123. 123.
    Stevens L, Zhang W, Peck L et al (2003) EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids 38(10):1007–1021PubMedGoogle Scholar
  124. 124.
    Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126(1):1–27PubMedGoogle Scholar
  125. 125.
    Ströhle A, Schmitt B, Hahn A (2002) Functional Foods—Eine Übersicht zur aktuellen Situation. Journal für orthomolekulare Medizin 10:326-349Google Scholar
  126. 126.
    Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779(1):89–137PubMedGoogle Scholar
  127. 127.
    Tsukada H, Kakiuchi T, Fukumoto D et al (2000) Docosahexaenoic acid (DHA) improves the age-related impairment of the coupling mechanism between neuronal activation and functional cerebral blood flow response: a PET study in conscious monkeys. Brain Res 862(1–2):180–186PubMedGoogle Scholar
  128. 128.
    Uauy R, Hoffman DR, Peirano P et al (2001) Essential fatty acids in visual and brain development. Lipids 36(9):885–895PubMedGoogle Scholar
  129. 129.
    Uauy R, Dangour AD (2006) Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev 64(5 Pt 2):S24–S33PubMedGoogle Scholar
  130. 130.
    Vancassel S, Durand G, Barthelemy C et al (2001) Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fatty Acids 65(1):1–7PubMedGoogle Scholar
  131. 131.
    Villa B, Calabresi L, Chiesa G et al (2002) Omega-3 fatty acid ethyl esters increase heart rate variability in patients with coronary disease. Pharmacol Res 45(6):475PubMedGoogle Scholar
  132. 132.
    Voigt RG, Llorente AM, Jensen CL et al (2001) A randomized, double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder. J Pediatr 139(2):189–196PubMedGoogle Scholar
  133. 133.
    Wainwright PE (1997) Essential fatty acids and behaviour: is there a role for the eicosanoids? In: Yehuda S, Mostofsky DI (eds) Handbook of essential fatty acid biology: biochemistry, physiology and behavioral neurobiology. Humana, Totowa, NJ, pp 299–341Google Scholar
  134. 134.
    Wainwright PE (2002) Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc 61(1):61–69PubMedGoogle Scholar
  135. 135.
    Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27(9):467PubMedGoogle Scholar
  136. 136.
    Willatts P, Forsyth JS, DiModugno MK et al (1998) Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 352(9129):688–691PubMedGoogle Scholar
  137. 137.
    Ximenes da Silva SA, Lavialle F, Gendrot G et al (2002) Glucose transport and utilization are altered in the brain of rats deficient in n − 3 polyunsaturated fatty acids. J Neurochem 81(6):1328–1337PubMedGoogle Scholar
  138. 138.
    Yao J, Stanley JA, Reddy RD et al (2002) Correlations between peripheral polyunsaturated fatty acid content and in vivo membrane phospholipid metabolites. Biol Psychiatry 52(8):823–830PubMedGoogle Scholar
  139. 139.
    Yehuda S, Rabinovitz S, Mostofsky DI (1999) Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res 56(6):565–570PubMedGoogle Scholar
  140. 140.
    Yoshida S, Sato A, Okuyama H (1998) Pathophysiological effects of dietary essential fatty acid balance on neural systems. Jpn J Pharmacol 77(1):11–22PubMedGoogle Scholar
  141. 141.
    Young GS, Maharaj NJ, Conquer JA (2004) Blood phospholipid fatty acid analysis of adults with and without attention deficit/hyperactivity disorder. Lipids 39(2):117–123PubMedGoogle Scholar
  142. 142.
    Zimmer L, Hembert S, Durand G et al (1998) Chronic n − 3 polyunsaturated fatty acid diet-deficiency acts on dopamine metabolism in the rat frontal cortex: a microdialysis study. Neurosci Lett 240(3):177–181PubMedGoogle Scholar
  143. 143.
    Zimmer L, Vancassel S, Cantagrel S et al (2002) The dopamine mesocorticolimbic pathway is affected by deficiency in n − 3 polyunsaturated fatty acids. Am J Clin Nutr 75(4):662–667PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jan Philipp Schuchardt
    • 1
  • Michael Huss
    • 2
  • Manuela Stauss-Grabo
    • 3
  • Andreas Hahn
    • 1
  1. 1.Institute of Food Science, Nutrition physiology and human nutrition unitLeibniz University of HanoverHanoverGermany
  2. 2.Department for Child and Adolescent PsychiatryJohannes Gutenberg-UniversityMainzGermany
  3. 3.Engelhard Arzneimittel GmbH & Co.KGNiederdorfeldenGermany

Personalised recommendations