Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life

  • J. Miletin
  • K. Pichova
  • E. M. Dempsey
Original Paper


We aimed to assess the relationship between the clinical and biochemical parameters of perfusion and superior vena cava (SVC) flow in a prospective observational cohort study of very low birth weight (VLBW) infants. Newborns with congenital heart disease were excluded. Echocardiographic evaluation of SVC flow was performed in the first 24 h of life. Capillary refill time (forehead, sternum and toe), mean blood pressure, urine output and serum lactate concentration were also measured simultaneously. Thirty-eight VLBW infants were examined. Eight patients (21%) had SVC flow less than 40 ml/kg/min. There was a poor correlation between the capillary refill time (in all sites), mean blood pressure, urine output and SVC flow. The correlation coefficient for the serum lactate concentration was r = −0.28, p = 0.15. The median serum lactate concentration was 3.5 (range 2.8–8.5) vs. 2.7 (range 1.2–6.9) mmol/l (p = 0.01) in low flow versus normal flow states. A serum lactate concentration of >2.8 was 100% sensitive and 60% specific for detecting a low flow state. Combining a capillary refill time of >4 s with a serum lactate concentration of >4 mmol/l had a specificity of 97% for detecting a low SVC flow state. Serum lactate concentrations are higher in low SVC flow states. A capillary refill time of >4 s combined with serum lactate concentrations >4 mmol/l increased the specificity and positive and negative predictive values of detecting a low SVC flow state.


Very low birth weight Low superior vena cava flow Lactate Capillary refill time 


  1. 1.
    Abubacker M, Yoxall CW, Lamont G (2003) Peri-operative blood lactate concentrations in pre-term babies with necrotising enterocolitis. Eur J Pediatr Surg 13:35–39 doi: 10.1055/s-2003-38298 PubMedCrossRefGoogle Scholar
  2. 2.
    Dempsey EM, Barrington KJ (2006) Diagnostic criteria and therapeutic interventions for the hypotensive very low birth weight infant. J Perinatol 26:677–681 doi: 10.1038/ PubMedCrossRefGoogle Scholar
  3. 3.
    Dempsey EM, Barrington KJ (2007) Treating hypotension in the preterm infant: when and with what: a critical and systematic review. J Perinatol 27:469–478 doi: 10.1038/ PubMedCrossRefGoogle Scholar
  4. 4.
    Deshpande SA, Platt MP (1997) Association between blood lactate and acid-base status and mortality in ventilated babies. Arch Dis Child Fetal Neonatal Ed 76:F15–F20PubMedCrossRefGoogle Scholar
  5. 5.
    Evans N, Iyer P (1993) Change in blood pressure after treatment of patent ductus arteriosus with indomethacin. Arch Dis Child 68:584–587PubMedCrossRefGoogle Scholar
  6. 6.
    Evans N, Iyer P (1994) Assessment of ductus arteriosus shunt in preterm infants supported by mechanical ventilation: effect of interatrial shunting. J Pediatr 125:778–785PubMedGoogle Scholar
  7. 7.
    Evans N, Iyer P (1994) Incompetence of the foramen ovale in preterm infants supported by mechanical ventilation. J Pediatr 125:786–792PubMedGoogle Scholar
  8. 8.
    Evans N, Kluckow M (1996) Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed 74:F88–F94PubMedCrossRefGoogle Scholar
  9. 9.
    Evans N, Osborn D, Kluckow M (2005) Preterm circulatory support is more complex than just blood pressure. Pediatrics 115:1114–1115; author reply 1115–1116PubMedCrossRefGoogle Scholar
  10. 10.
    Fitzgerald MJ, Goto M, Myers TF, Zeller WP (1992) Early metabolic effects of sepsis in the preterm infant: lactic acidosis and increased glucose requirement. J Pediatr 121:951–955 doi: 10.1016/S0022-3476(05)80350-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Groenendaal F, Lindemans C, Uiterwaal CS, de Vries LS (2003) Early arterial lactate and prediction of outcome in preterm neonates admitted to a neonatal intensive care unit. Biol Neonate 83:171–176 doi: 10.1159/000068927 PubMedCrossRefGoogle Scholar
  12. 12.
    Hunt RW, Evans N, Rieger I, Kluckow M (2004) Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr 145:588–592 doi: 10.1016/j.jpeds.2004.06.056 PubMedCrossRefGoogle Scholar
  13. 13.
    Izraeli S, Ben-Sira L, Harell D, Naor N, Ballin A, Davidson S (1993) Lactic acid as a predictor for erythrocyte transfusion in healthy preterm infants with anemia of prematurity. J Pediatr 122:629–631 doi: 10.1016/S0022-3476(05)83551-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Kluckow M, Evans N (2000) Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed 82:F188–F194 doi: 10.1136/fn.82.3.F188 PubMedCrossRefGoogle Scholar
  15. 15.
    Kluckow M, Evans N (2000) Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed 82:F182–F187 doi: 10.1136/fn.82.3.F182 PubMedCrossRefGoogle Scholar
  16. 16.
    Kluckow M, Seri I, Evans N (2007) Functional echocardiography: an emerging clinical tool for the neonatologist. J Pediatr 150:125–130 doi: 10.1016/j.jpeds.2006.10.056 PubMedCrossRefGoogle Scholar
  17. 17.
    LeFlore JL, Engle WD (2005) Capillary refill time is an unreliable indicator of cardiovascular status in term neonates. Adv Neonatal Care 5:147–154 doi: 10.1016/j.adnc.2005.02.008 PubMedCrossRefGoogle Scholar
  18. 18.
    Osborn DA, Evans N, Kluckow M (2003) Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics 112:33–39 doi: 10.1542/peds.112.1.33 PubMedCrossRefGoogle Scholar
  19. 19.
    Osborn DA, Evans N, Kluckow M (2004) Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch Dis Child Fetal Neonatal Ed 89:F168–F173 doi: 10.1136/adc.2002.023796 PubMedCrossRefGoogle Scholar
  20. 20.
    Osborn DA, Evans N, Kluckow M, Bowen JR, Rieger I (2007) Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics 120:372–380 doi: 10.1542/peds.2006-3398 PubMedCrossRefGoogle Scholar
  21. 21.
    Raju NV, Maisels MJ, Kring E, Schwarz-Warner L (1999) Capillary refill time in the hands and feet of normal newborn infants. Clin Pediatr (Phila) 38:139–144 doi: 10.1177/000992289903800303 CrossRefGoogle Scholar
  22. 22.
    Seri I, Evans J (2001) Controversies in the diagnosis and management of hypotension in the newborn infant. Curr Opin Pediatr 13:116–123 doi: 10.1097/00008480-200104000-00005 PubMedCrossRefGoogle Scholar
  23. 23.
    Strozik KS, Pieper CH, Roller J (1997) Capillary refilling time in newborn babies: normal values. Arch Dis Child Fetal Neonatal Ed 76:F193–F196PubMedCrossRefGoogle Scholar
  24. 24.
    Wardle SP, Yoxall CW, Weindling AM (1999) Peripheral oxygenation in hypotensive preterm babies. Pediatr Res 45:343–349 doi: 10.1203/00006450-199903000-00009 PubMedCrossRefGoogle Scholar
  25. 25.
    Wodey E, Pladys P, Bétrémieux P, Kerebel C, Ecoffey C (1998) Capillary refilling time and hemodynamics in neonates: a Doppler echocardiographic evaluation. Crit Care Med 26:1437–1440 doi: 10.1097/00003246-199808000-00034 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Paediatrics and Newborn MedicineCoombe Women and Infants University HospitalDublin 8Ireland
  2. 2.Department of NeonatologyCork University Maternity HospitalCorkIreland
  3. 3.Neonatal Intensive Care UnitInstitute for the Care of Mother and ChildPragueCzech Republic

Personalised recommendations