European Journal of Pediatrics

, Volume 166, Issue 9, pp 957–966 | Cite as

Ten years’ experience with year-round active surveillance of up to 19 respiratory pathogens in children

  • Josef A. I. Weigl
  • Wolfram Puppe
  • Claudius U. Meyer
  • Reinhard Berner
  • Johannes Forster
  • Heinz J. Schmitt
  • Fred Zepp
  • PID-ARI.net
Original Paper

Abstract

Introduction

Surveillance systems for acute respiratory infections (ARI) in children currently are often limited in terms of the panel of pathogens and the age range investigated or are only syndromic and at times only active in the winter season.

Methods

Within PID-ARI.net, a research network for ARI in children in Germany, an active, year-round surveillance system was formed in three regions from north to south for population-based analysis. Children from birth to 16 years of age were included and up to 19 noncolonizing airway pathogens were tested for with multiplex RT-PCR.

Results

In the 10-year period from July 1996 to June 2006, a total of 18,899 samples were tested. The positive rate increased with the size of the test panel to up to 72.9%. Picornaviruses (35–39%), paramyxoviruses (23–28%) and orthomyxoviruses (5.8–12.5%) comprised the highest fraction. Reoviruses and Legionella pneumophila were not found at all and Chlamydia pneumoniae and Bordetella parapertussis only rarely. Respiratory syncytial virus and parainfluenza virus (PIV) type 3 were anticyclical in rhythmicity with metapneumovirus and PIV1 and PIV2. The age medians per pathogen depended predominantly upon the attack rate and interepidemic intervals.

Conclusion

Active surveillance systems for ARI are superior to passive systems. They should be pathogen-specific and comprehensive for viruses and bacteria and age ranges. They should be population-based and multilevel to avoid bias. The impact of atypical bacteria in children was highly overestimated in earlier studies.

Keywords

Airway infections Metapneumovirus Multiplex RT-PCR Population-based Surveillance 

Abbreviations

ARI

acute respiratory infection

ERS

epidemiological recruitment system

ey

epidemiological year

LRI

lower respiratory infections

m-RT-PCR

multiplex reverse transcription polymerase chain reaction

NPA

nasopharyngeal aspirate

Notes

Acknowledgements

We appreciate the help of our co-workers S. Rockahr, B. Reckewitz and G. Delfs. We thank Dr. von Klinggräff and PD Dr. Claaß, former and current head, respectively, of the Pediatric Department, Municipal Hospital, Kiel; PD Dr. Oldigs, head of the Department of Pediatrics, Municipal Hospital, Flensburg; and office pediatricians Mrs. Dr. and Mr. Schäfer, Izehoe; Dr. Hake and Dr. Morf, Flensburg; Dr. Kelber, Lüneburg; Dr. Neufang, Dr. Zaum, Freiburg; Dr. Eppinger, Bad Krozingen; and Dr. Vogel, Dr. Huber, Dr. Humber and Dr. Homann for their collaboration. We thank Dr. Adrian Sewell, University Children’s Hospital Frankfurt/Main, for linguistic assistance. This work was supported by the grant (FKZ 01KI0213) for PID-ARI.net, the Pediatric Infectious Diseases Network on Acute Respiratory Tract Infections, awarded by the Bundesministerium für Forschung (BMBF) via the Deutsches Zentrum für Luft- und Raumfahrt e.V.

References

  1. 1.
    Boni MF, Gog JR, Andreasen V, Christiansen FB (2004) Influenza drift and epidemic size: the race between generating and escaping immunity. Theor Popul Biol 65:179–191PubMedCrossRefGoogle Scholar
  2. 2.
    Broughton RA (1986) Infection due to Mycoplasma pneumoniae in childhood. Pediatr Infect Dis J 5:71–85CrossRefGoogle Scholar
  3. 3.
    Florman AL, McLean LC (1988) The effect of altitude and weather on the occurrence of outbreaks of respiratory syncytial virus infections. J Infect Dis 158:1401–1402PubMedGoogle Scholar
  4. 4.
    Glezen WP, Denny FW (1973) Epidemiology of acute lower respiratory disease in children. N Engl J Med 288:498–505PubMedCrossRefGoogle Scholar
  5. 5.
    Graham NMH (1994) Respiratory infections. In: Pless IB (ed) The epidemiology of childhood disorders. Oxford University Press, New York pp 173–210Google Scholar
  6. 6.
    Gröndahl B, Puppe W, Hoppe A, Kühne I, Weigl JAI, Schmitt HJ (1999) Rapid identification of nine microorganisms causing acute respiratory tract infections by single-tube multiplex reverse transcription-PCR: feasibility study. J Clin Microbiol 37:1–7PubMedGoogle Scholar
  7. 7.
    Halstead D, Jenkins SG (1998) Continuous non-seasonal epidemic of respiratory syncytial virus infection in the Southeast United States. South Med J 91:433–436PubMedGoogle Scholar
  8. 8.
    Heininger UH, Stehr K, Christenson P, Cherry JD (2004) Evidence of efficacy of the Lederle/Takeda acellular pertussis component diphtheria and tetanus toxoids and pertussis vaccine but not the Lederle whole-cell component diphtheria and tetanus toxoids and pertussis vaccine against Bordetella parapertussis infection. Clin Infect Dis 28:602–604Google Scholar
  9. 9.
    Hendrickson KJ, Hoover S, Hehl KS, Hua W (2004) National disease burden of respiratory viruses detected in children by polymerase chain reaction. Pediatr Infect Dis J 23:S11–S18CrossRefGoogle Scholar
  10. 10.
    Horwitz MS (1996) Adenoviruses. In: Fields BN, Knipe DM, Howley PM, Channock RM, Melnick JL, Monath TP, Roizman B, Straus SE (eds) Fields virology, 3rd ed. vol 2. Lippincott-Raven, Philadelphia, pp 2149–2171Google Scholar
  11. 11.
    Jartti T, Lehtinen P, Vuorinen T, Osterback R, van den Hoogen B, Osterahus AD, Ruuskanen O (2004) Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children. Emerg Infect Dis 10:1095–1101PubMedGoogle Scholar
  12. 12.
    Jennings LC, Anderson TP, Werno AM, Beynon KA, Murdoch DR (2004) Viral etiology of acute respiratory tract infections in children presenting to hospital. Role of polymerase chain reaction and demonstration of multiple infections. Pediatr Infect Dis J 23:1003–1007PubMedCrossRefGoogle Scholar
  13. 13.
    Juven T, Mertsola J, Waris M, Leinonen M, Meurman O, Roivainen M, Eskola J, Saikku P, Ruuskanen O (2000) Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J 19:293–298PubMedCrossRefGoogle Scholar
  14. 14.
    Kahn JS, McIntosh K (2005) History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24:S223–S227PubMedCrossRefGoogle Scholar
  15. 15.
    Karron RA, O’Brien KL, Froehlich JL, Brown VA (1993) Molecular epidemiology of a parainfluenza type 3 virus outbreak on a pediatric ward. J Infect Dis 167:1441–1445PubMedGoogle Scholar
  16. 16.
    Kellner G, Popow-Kraupp T, Kundi M, Binder C, Wallner H, Kunz C (1988) Contribution of rhinoviruses to respiratory viral infections in childhood: a prospective study in a mainly hospitalized infant population. J Med Virol 25:455–469PubMedCrossRefGoogle Scholar
  17. 17.
    Laine P, Savolainen C, Blomqvist S, Hovi T (2005) Phylogenetic analysis of human rhinovirus capsid protein VP1 and 2A protease coding sequences confirms shared genus-like relationships with human enteroviruses. J Gen Virol 86:697–706PubMedCrossRefGoogle Scholar
  18. 18.
    Legg JP, Warner JA, Johnston S, Warner JO (2005) Frequency of detection of picornaviruses and seven other respiratory pathogens in infants. Pediatr Infect Dis J 24:611–616PubMedCrossRefGoogle Scholar
  19. 19.
    Lind K, Bentzon MW (1988) Changes in the epidemiological pattern of Mycoplasma pneumoniae infections in Denmark–a 30 years survey. Epidemiol Infect 101:377–386PubMedCrossRefGoogle Scholar
  20. 20.
    Madhi SA, Klugmann KP, the Vaccine Trialist Group (2004) A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat Med 8:811–813CrossRefGoogle Scholar
  21. 21.
    Minh NNT, Ilef D, Campese C, Che D, Ganiayre F, Haeghebaert S, Guitard C, Panie G, Jarraud S, Marcel F, Desenclos JC (2004) A prolonged outbreak of Legionnaires’ disease associated with an industrial cooling tower–how far can airborne transmission spread? Abstracts of the 9th EPIET Scientific Seminar, Mahon, Menorca, October 14–16, p 57Google Scholar
  22. 22.
    Mullins JA, Lamonte AC, Bresee JS, Anderson LJ (2003) Substantial variability in community respiratory syncytial virus season timing. Pediatr Infect Dis J 22:857–863PubMedCrossRefGoogle Scholar
  23. 23.
    Papadopoulos NG, Bates PJ, Bardin PG, Papi A, Leir SH, Fraenkel DJ, Meyer J, Lackie PM, Sanderson G, Holgate ST, Johnston SL (2000) Rhinoviruses infect the lower airways. J Infect Dis 181:1875–1884PubMedCrossRefGoogle Scholar
  24. 24.
    Peltola VT, Murti KG, McCullers JA (2005) Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis 192:249–257PubMedCrossRefGoogle Scholar
  25. 25.
    Puppe W, Weigl JAI, Aron G, Gröndahl B, Schmitt HJ, Niesters HGM, Groen J (2004) Evaluation of a multiplex reverse transcriptase PCR ELISA for the detection of nine respiratory tract pathogens. J Clin Virology 30:165–174CrossRefGoogle Scholar
  26. 26.
    Reinert RR, Luetticken R, Brvskier A, Al-Lahham A (2003) Macrolide-resistant Streptococcus pneumoniae and Streptococcus pyogenes in the pediatric population in Germany during 2000–2001. Antimicrobial Agents Chemoth 47:489–493CrossRefGoogle Scholar
  27. 27.
    Schmidt SM, Müller CE, Mahner B, Wiersbitzky SKW (2002) Prevalence, rate of persistence and respiratory tract symptoms of Chlamydia pneumoniae infections in 1211 kindergarten and school age children. Pediatr Infect Dis J 21:758–762PubMedCrossRefGoogle Scholar
  28. 28.
    Semple MG, Cowell A, Dove W, Greensill J, McNamara PS, Halfhide C, Shears P, Smyth RL, Hart CA (2005) Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J Infect Dis 191:382–386PubMedCrossRefGoogle Scholar
  29. 29.
    Trollfors B, Claesson BA (1997) Childhood pneumonia: possibilities for aetiological diagnosis. Baillière’s Clin Paediatr 5:71–83Google Scholar
  30. 30.
    Tsolia MN, Psarras S, Bossios A, Audi H, Palanius M, Gourgiotis D, Kallergi K, Kafetzis DA, Constantopoulos A, Papadopoulos NG (2004) Etiology of community-acquired pneumonia in hospitalized school-age children: evidence for high prevalence of viral infections. Clin Infect Dis 39:681–686PubMedCrossRefGoogle Scholar
  31. 31.
    Van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD (2001) A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 7:719–724PubMedCrossRefGoogle Scholar
  32. 32.
    Waris M (1991) Pattern of respiratory syncytial virus epidemics in Finland: two-year cycles with alternating prevalence of groups A and B. J Infect Dis 163:464–469PubMedGoogle Scholar
  33. 33.
    Weber A, Weber M, Milligan P (2001) Modeling epidemics caused by respiratory syncytial virus (RSV). Math Biosci 172:95–113PubMedCrossRefGoogle Scholar
  34. 34.
    Weigl JAI, Puppe W, Meyer CU, Berner R, Forster J, Schmitt HJ, Zepp F, PID-ARI.net (2005) RSV-prevention in children guided by a web-based early warning system. Klin Pädiatrie 217:47–52CrossRefGoogle Scholar
  35. 35.
    Weigl JAI, Puppe W, Gröndahl B, Schmitt HJ (2000) Epidemiological investigation of nine respiratory pathogens in hospitalized children in Germany using multiplex reverse transcriptase polymerase chain reaction. Eur J Clin Microbiol Infect Dis 9:336–343CrossRefGoogle Scholar
  36. 36.
    Weinberg GA, Erdman D, Edwards KM, Hall CB, Walker FJ, Griffin MR, Schwartz B, the New Vaccine Surveillance Network Study Group (2004) Superiority of reverse-transcription polymerase chain reaction to conventional viral culture in the diagnosis of acute respiratory tract infections in children. J Infect Dis 189:706–710PubMedCrossRefGoogle Scholar
  37. 37.
    Wilkinson TMA, Donaldson GC, Johnston SL, Openshaw PJM, Wedzicha JA (2006) Respiratory syncytial virus, airway inflammation, and FEV1 decline in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 73:871–876CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Josef A. I. Weigl
    • 1
    • 2
  • Wolfram Puppe
    • 1
    • 2
  • Claudius U. Meyer
    • 2
  • Reinhard Berner
    • 3
  • Johannes Forster
    • 4
  • Heinz J. Schmitt
    • 2
  • Fred Zepp
    • 2
  • PID-ARI.net
  1. 1.Pediatric Infectious DiseasesChildren’s Hospital KielKielGermany
  2. 2.Kinderklinik, Paediatrische Infektiologie & Zentrum Praeventive PaediatrieJohannes Gutenberg UniversitaetMainzGermany
  3. 3.Zentrum für Kinderheilkunde und JugendmedizinAlbrecht Ludwig UniversitaetFreiburgGermany
  4. 4.St. JosefskrankenhausAbteilung für Kinderheilkunde und JugendmedizinFreiburgGermany

Personalised recommendations