European Journal of Pediatrics

, Volume 167, Issue 2, pp 225–229 | Cite as

Hypothesis: Possible role of retinoic acid therapy in patients with biallelic mismatch repair gene defects

  • Sven Gottschling
  • Harald Reinhard
  • Constanze Pagenstecher
  • Stefan Krüger
  • Jochen Raedle
  • Guido Plotz
  • Wolfram Henn
  • Reinhard Buettner
  • Sascha Meyer
  • Norbert Graf
Original Article


A boy showing symptoms of a Turcot-like childhood cancer syndrome together with stigmata of neurofibromatosis type I is reported. His brother suffers from an infantile myofibromatosis, and a sister died of glioblastoma at age 7. Another 7-year-old brother is so far clinically unaffected. The parents are consanguineous. Molecular diagnosis in the index patient revealed a constitutional homozygous mutation of the mismatch repair gene PMS2. The patient was in remission of his glioblastoma (WHO grade IV) after multimodal treatment followed by retinoic acid chemoprevention for 7 years. After discontinuation of retinoic acid medication, he developed a relapse of his brain tumour together with the simultaneous occurrence of three other different HNPCC-related carcinomas. We think that retinoic acid might have provided an effective chemoprevention in this patient with homozygous mismatch repair gene defect. We propose to take a retinoic acid chemoprevention into account in children with proven biallelic PMS2 mismatch repair mutations being at highest risk concerning the development of a malignancy.


Turcot Retinoic acid Lynch Childhood cancer syndrome PMS2 


  1. 1.
    Agostini M, Tibiletti MG, Lucci-Cordisco E, Chiaravalli A, Morreau H, Furlan D, Boccuto L, Pucciarelli S, Capella C, Boiocchi M, Viel A (2005) Two PMS2 mutations in a Turcot syndrome family with small bowel cancers. Am J Gastroenterol 100:1886–1891PubMedCrossRefGoogle Scholar
  2. 2.
    Bartolini G, Ammar K, Mantovani B, Scanabissi F, Ferreri AM, Rocchi P, Orlandi M (2004) Retinoids and cancer: antitumor effect of ATRA and of a new derivative of retinoic acid, IIF, on colon carcinoma cell lines CaCo-2 and HT-29. Anticancer Res 24:1779–1783PubMedGoogle Scholar
  3. 3.
    Bonthron DT, Hayward BE, De Vos M, Sheridan E (2005) PMS2 mutations in childhood cancer. Gut 54:1821PubMedCrossRefGoogle Scholar
  4. 4.
    Brieger A, Plotz G, Raedle J, Weber N, Baum W, Caspary WF, Zeuzem S, Trojan J (2005) Characterization of the nuclear import of human MutLalpha. Mol Carcinog 43:51–58PubMedCrossRefGoogle Scholar
  5. 5.
    Chen PC, Dudley S, Hagen W, Dizon D, Paxton L, Reichow D, Yoon SR, Yang K, Arnheim N, Liskay RM, Lipkin SM (2005) Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. Cancer Res 65:8662–8670PubMedCrossRefGoogle Scholar
  6. 6.
    De Rosa M, Fasano C, Panariello L, Scarano MI, Belli G, Iannelli A, Ciciliano F, Izzo P (2000) Evidence for a recessive inheritance of Turcot’s syndrome caused by compound heterozygous mutations within the PMS2 gene. Oncogene 19:1719–1723PubMedCrossRefGoogle Scholar
  7. 7.
    De Vos M, Hayward B, Bonthron DT, Sheridan E (2005) Phenotype associated with recessively inherited mutations in DNA mismatch repair (MMR) genes. Biochem Soc Trans 33:718–720PubMedCrossRefGoogle Scholar
  8. 8.
    De Vos M, Hayward B, Picton S, Sheridan E, Bonthron DT (2004) Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet 74:954–964PubMedCrossRefGoogle Scholar
  9. 9.
    Gryfe R, Gallinger S (2005) Germline PMS2 mutations: one hit or two? Gastroenterology 128:1506–1509PubMedCrossRefGoogle Scholar
  10. 10.
    Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B, Burger PC, Wood PA, Taqi F, Booker SV, Petersen GM, Offerhaus JA, Tersmette AC, Giardiello FM, Vogelstein B, Kinzler KW (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332:839–847PubMedCrossRefGoogle Scholar
  11. 11.
    Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, Panescu J, Fix D, Lockman J, Comeras I, de la Chapelle A (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352:1851–1860PubMedCrossRefGoogle Scholar
  12. 12.
    Kosinski J, Steindorf I, Bujnicki JM, Giron-Monzon L, Friedhoff P (2005) Analysis of the quaternary structure of the MutL C-terminal domain. J Mol Biol 351:895–909PubMedCrossRefGoogle Scholar
  13. 13.
    Mrass P, Rendl M, Mildner M, Gruber F, Lengauer B, Ballaun C, Eckhart L, Tschachler E (2004) Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: a possible explanation for tumor preventive action of retinoids. Cancer Res 64:6542–6548PubMedCrossRefGoogle Scholar
  14. 14.
    Nakagawa H, Lockman JC, Frankel WL, Hampel H, Steenblock K, Burgart LJ, Thibodeau SN, de la Chapelle A (2004) Mismatch repair gene PMS2: disease-causing germline mutations are frequent in patients whose tumors stain negative for PMS2 protein, but paralogous genes obscure mutation detection and interpretation. Cancer Res 64:4721–4727PubMedCrossRefGoogle Scholar
  15. 15.
    Plotz G, Raedle J, Brieger A, Trojan J, Zeuzem S (2003) N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res 31:3217–3226PubMedCrossRefGoogle Scholar
  16. 16.
    Rutz HP, de Tribolet N, Calmes JM, Chapuis G (1991) Long-time survival of a patient with glioblastoma and Turcot’s syndrome. Case report. J Neurosurg 74:813–815PubMedCrossRefGoogle Scholar
  17. 17.
    Shimodaira H, Yoshioka-Yamashita A, Kolodner RD, Wang JY (2003) Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proc Natl Acad Sci USA 100:2420–2425PubMedCrossRefGoogle Scholar
  18. 18.
    Truninger K, Menigatti M, Luz J, Russell A, Haider R, Gebbers JO, Bannwart F, Yurtsever H, Neuweiler J, Riehle HM, Cattaruzza MS, Heinimann K, Schar P, Jiricny J, Marra G (2005) Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology 128:1160–1171PubMedCrossRefGoogle Scholar
  19. 19.
    Worthley DL, Walsh MD, Barker M, Ruszkiewicz A, Bennett G, Phillips K, Suthers G (2005) Familial mutations in PMS2 can cause autosomal dominant hereditary nonpolyposis colorectal cancer. Gastroenterology 128:1431–1436PubMedCrossRefGoogle Scholar
  20. 20.
    Yung WK, Kyritsis AP, Gleason MJ, Levin VA (1996) Treatment of recurrent malignant gliomas with high-dose 13-cis-retinoic acid. Clin Cancer Res 2:1931–1935PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sven Gottschling
    • 1
  • Harald Reinhard
    • 1
  • Constanze Pagenstecher
    • 2
  • Stefan Krüger
    • 3
  • Jochen Raedle
    • 4
  • Guido Plotz
    • 4
  • Wolfram Henn
    • 5
  • Reinhard Buettner
    • 6
  • Sascha Meyer
    • 1
  • Norbert Graf
    • 1
  1. 1.Department of Pediatric Hematology and Oncology Saarland UniversityUniversity Children’s HospitalHomburgGermany
  2. 2.Institute of Human GeneticsUniversity Hospital BonnBonnGermany
  3. 3.Department of Surgical Research and Institute of Clinical GeneticsDresden University of TechnologyDresdenGermany
  4. 4.Department of Internal Medicine II, Division of GastroenterologySaarland UniversityHomburgGermany
  5. 5.Institute of Human GeneticsSaarland UniversityHomburgGermany
  6. 6.Institute of PathologyUniversity Hospital BonnBonnGermany

Personalised recommendations