European Journal of Pediatrics

, Volume 165, Issue 9, pp 618–624

Effects of arginine treatment on nutrition, growth and urea cycle function in seven Japanese boys with late-onset ornithine transcarbamylase deficiency

  • Hironori Nagasaka
  • Tohru Yorifuji
  • Kei Murayama
  • Mitsuru Kubota
  • Keiji Kurokawa
  • Tomoko Murakami
  • Masaki Kanazawa
  • Tomozumi Takatani
  • Atsushi Ogawa
  • Emi Ogawa
  • Shigenori Yamamoto
  • Masanori Adachi
  • Kunihiko Kobayashi
  • Masaki Takayanagi
Original Paper

Abstract

Background

The aim of this study was to investigate the effects of arginine on nutrition, growth and urea cycle function in boys with late-onset ornithine transcarbamylase deficiency (OTCD). Seven Japanese boys with late-onset OTCD enrolled in this study resumed arginine treatment after the cessation of this therapy for a few years. Clinical presentations such as vomiting and unconsciousness, plasma amino acids and urinary orotate excretion were followed chronologically to evaluate urea cycle function and protein synthesis with and without this therapy. In addition to height and body weight, blood levels of proteins, lipids, growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-binding protein -3 (IGFBP-3) were monitored.

Results

The frequency of hyperammonemic attacks and urinary orotate excretion decreased significantly following the resumption of arginine treatment. Despite showing no marked change in body weight, height increased gradually. Extremely low plasma arginine increased to normal levels, while plasma glutamine and alanine levels decreased considerably. Except for a slight increase in high-density lipoprotein cholesterol level, blood levels of markers for nutrition did not change. In contrast, low serum IGF-I and IGFBP-3 levels increased to age-matched control levels, and normal urinary GH secretion became greater than the level observed in the controls.

Conclusion

Arginine treatment is able to reduces attacks of hyperammonemia in boys with late-onset OTCD and to increase their growth.

Keywords

Arginine deficiency Growth hormone Nutrition and growth Plasma glutamine and alanine Ornithine transcarbamylase deficiency Orotate 

Abbreviations

FFA

Free fatty acids

GH

Growth hormone

IGF-I

Insulin-like growth factor-I

IGFBP-3

Insulin-like growth factor binding protein-3

OTCD

Ornithine transcarbamylase deficiency

TKB

Total ketone body

TP

Total protein

References

  1. 1.
    Batshaw ML, MacArthur RB, Tuchman M (2001) Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatr 138[Suppl 1]:S46–54, discussion S54–S55PubMedGoogle Scholar
  2. 2.
    Berry GT, Steiner RD (2001) Long-term management of patients with urea cycle disorders. J Pediatr 138[Suppl]:S56–S60, discussion S60–S61PubMedGoogle Scholar
  3. 3.
    Bonnefont JP, Specola NB, Vassault A, Lombes A, Ogier H, de Klerk JB, Munnich A, Coude M, Paturneau-Jouas M, Saudubray JM (1990) The fasting test in paediatrics: application to the diagnosis of pathological hypo-and hyperketotic states. Eur J Pediatr 150:80–85PubMedCrossRefGoogle Scholar
  4. 4.
    Brusilow SW (1984) Arginine, an indispensable amino acid for patients with inborn errors of metabolism. J Clin Invest 117:2144–2148CrossRefGoogle Scholar
  5. 5.
    Brusilow SW, Hauser E (1989) Simple method of measurement of orotate and orotidine in urine. J Chromatogr 493:388–391PubMedCrossRefGoogle Scholar
  6. 6.
    Brusilow SW, Horwich AL (2001) Urea cycle enzymes. In: Scriver CR, Baudet AL, Valle D, Sly WS. The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New-York, pp 1909–1964Google Scholar
  7. 7.
    Carey GP, Kime Z, Rogers QR, Morris JG, Hargrove D, Buffington CA, Brusilow SW (1987) An arginine-deficient diet in humans does not evoke hyperammonemia or orotic aciduria. J Nutr 117:1734–1739PubMedGoogle Scholar
  8. 8.
    Counts DR, Gwirtsman H, Carlsson LM, Lesem M, Cutler GB Jr (1992) The effect of anorexia nervosa and refeeding on growth hormone-binding proteins, the insulin-like growth factors (IGFs), and the IGF-binding proteins. J Clin Endocrinol Metab 75:762–767PubMedCrossRefGoogle Scholar
  9. 9.
    Czarnecki GL, Baker DH (1984) Urea cycle function in the dog with emphasis on the role of arginine. J Nutr 114:581–590PubMedGoogle Scholar
  10. 10.
    Donn SM, Thoene JG (1985) Prospective prevention of neonatal hyperammonemia in arginosuccinic aciduria by arginine therapy. J Inherit Metab Dis 8:18–20PubMedCrossRefGoogle Scholar
  11. 11.
    Duran M, Wadman SK (1987) Chemical diagnosis of inherited defects of fatty acid metabolism and ketogenesis (a review). Enzyme 38:115–123PubMedGoogle Scholar
  12. 12.
    Fingerhut R, Roschinger W, Muntau AC, Dame T, Kreischer J, Arnecke R, Superti-Furga A, Troxler H, Liebl B, Olgemoller B, Roscher AA (2001) Hepatic carnitine palmitoyltransferase I deficiency: acylcarnitine profiles in blood spots are highly specific. Clin Chem 47:1763–1768PubMedGoogle Scholar
  13. 13.
    Finkelstein JE, Hauser ER, Leonard CO, Brusilow SW (1990) Late-onset ornithine transcarbamylase deficiency in male patients. J Pediatr 117:897–902PubMedCrossRefGoogle Scholar
  14. 14.
    Gianotti L, Maccario M, Lanfranco F, Ramunni J, Di Vito L, Grottoli S, Muller EE, Chigo E, Arvat E (2000) Arginine counteracts the inhibitory effect of recombinant human insulin-like growth factor I on the somatotroph responsiveness to growth hormone-releasing hormone in humans. J Clin Endocrinol Metab 85:3604–3608PubMedCrossRefGoogle Scholar
  15. 15.
    Gianotti L, Pincelli AI, Scacchi M, Rolla M, Bellitti D, Arvat E, Lanfranco F, Torsello A, Ghigo E, Cavagnini F, Muller EE (2000) Effects of recombinant human insulin-like growth factor I administration on spontaneous and growth hormone (GH)-releasing hormone-stimulated GH secretion in anorexia nervosa. J Clin Endocrinol Metab 85:2805–2809PubMedCrossRefGoogle Scholar
  16. 16.
    Girard J, Fischer-Wasels T (1990) Measurement of urinary growth hormone. A noninvasive method to assess the growth hormone status. Horm Res 33[Suppl 4]:12–18PubMedCrossRefGoogle Scholar
  17. 17.
    Grottoli S, Gasco V, Ragazzoni F, Ghigo E (2003) Hormonal diagnosis of GH hypersecretory states. J Endocrinol Invest 26:27–35PubMedGoogle Scholar
  18. 18.
    Hanew K, Utsumi A (2002) The role of endogenous GHRH in arginine-, insulin-, clonidine- and l-dopa-induced GH release in normal subjects. Eur J Endocrinol 146:197–202PubMedCrossRefGoogle Scholar
  19. 19.
    Hourd P, Edwards R (1994) Current methods for the measurement of growth hormone in urine (a review). Clin Endocrinol (Oxford) 40:155–170CrossRefGoogle Scholar
  20. 20.
    Leonard JV (2001) The nutritional management of urea cycle disorders. J Pediatr 138[Suppl 1]:S40–S44, discussion S44–S45PubMedGoogle Scholar
  21. 21.
    Maestri NE, Brusilow SW, Clissold DB, Bassett SS (1996) Long-term treatment of girls with ornithine transcarbamylase deficiency. N Engl J Med 335:855–859PubMedCrossRefGoogle Scholar
  22. 22.
    Maestri NE, Clissold DB, Brusilow SW (1999) Neonatal onset ornithine transcarbamylase deficiency: a retrospective analysis. J Pediatr 134:268–272PubMedCrossRefGoogle Scholar
  23. 23.
    Merimee TJ, Rabinowtitz D, Fineberg SE (1969) Arginine-initiated release of human growth hormone. Factors modifying the response in normal man. N Eng J Med 280:1434–1438CrossRefGoogle Scholar
  24. 24.
    Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED (1984) Neurological outcome in children with inborn errors of urea synthesis: outcome of urea-cycle enzymopathies. N Engl J Med 310:1500–1505PubMedCrossRefGoogle Scholar
  25. 25.
    Nagasaka H, Komatsu H, Ohura T, Sogo T, Inui A, Yorifuji T, Kei Murayama, Masaki Takayanagi, Hideaki Kikuta, Kunihiko Kobayashi (2004) Nitric oxide synthesis in ornithine transcarbamylase deficiency: possible involvement of low NO synthesis in clinical manifestations of urea cycle defect. J Pediatr 145:259–262PubMedCrossRefGoogle Scholar
  26. 26.
    Olpin SE (2004) Implications of impaired ketogenesis in fatty acid oxidation disorders (a review). Prostaglandins Leukot Essent Fatty Acids 70:293–308PubMedCrossRefGoogle Scholar
  27. 27.
    Sonoda T, Tatibana M (1983) Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem 258:9839–9844PubMedGoogle Scholar
  28. 28.
    Uchino T, Endo F, Matsuda I (1998) Neurodevelopmental outcome of long-term therapy of urea cycle disorders in Japan. J Inherit Metab Dis 21[Suppl 1]:151–159PubMedCrossRefGoogle Scholar
  29. 29.
    Widhalm K, Koch S, Scheibenreiter S, Knoll E, Colombo JP, Bachmann C, Thalhammer O (1992) Long-term follow-up of 12 patients with the late-onset variant of arginisuccinic acid lyase deficiency: no impairment of intellectual and psychomotor development during therapy. Pediatrics 89:1182–1184PubMedGoogle Scholar
  30. 30.
    Wilcken B (2004) Problems in the management of urea cycle disorders. Mol Genet Metab 81[Suppl 1]:S86–S91PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Hironori Nagasaka
    • 1
  • Tohru Yorifuji
    • 2
  • Kei Murayama
    • 1
  • Mitsuru Kubota
    • 3
  • Keiji Kurokawa
    • 2
  • Tomoko Murakami
    • 1
  • Masaki Kanazawa
    • 4
  • Tomozumi Takatani
    • 1
  • Atsushi Ogawa
    • 4
  • Emi Ogawa
    • 4
  • Shigenori Yamamoto
    • 4
  • Masanori Adachi
    • 5
  • Kunihiko Kobayashi
    • 3
  • Masaki Takayanagi
    • 1
  1. 1.Division of MetabolismChiba Children’s HospitalMidori-ku, ChibaJapan
  2. 2.Department of PediatricsKyoto University Graduate School of MedicineKyoto-shi, KyotoJapan
  3. 3.Department of PediatricsHokkaido University Graduate School of Medicine Sapporo, HokkaidoJapan
  4. 4.Department of PediatricsChiba University Graduate School of MedicineMidori-ku, ChibaJapan
  5. 5.Division of Endocrinology and MetabolismKanagawa Children’s Medical CenterYokohamaJapan

Personalised recommendations