European Journal of Pediatrics

, Volume 165, Issue 5, pp 299–305 | Cite as

Useful probability considerations in genetics: the goat problem with tigers and other applications of Bayes’ theorem

  • Konrad Oexle
Original Paper


Probabilities or risks may change when new information is available. Common sense frequently fails in assessing this change. In such cases, Bayes’ theorem may be applied. It is easy to derive and has abundant applications in biology and medicine. Some examples of the application of Bayes' theorem are presented here, such as carrier risk estimation in X-chromosomal disorders, maximal manifestation probability of a dominant trait with unknown penetrance, combination of genetic and non-genetic information, and linkage analysis. The presentation addresses the non-specialist who asks for valid and consistent explanations. The conclusion to be drawn is that Bayes’ theorem is an accessible and helpful tool for probability calculations in genetics.


Bayes’ theorem Carrier Penetrance Error rate Linkage analysis Monty Hall problem 


  1. 1.
    Barnard GA (1949) Statistical inference. J R Stat Soc B 11:115–139Google Scholar
  2. 2.
    Freimer N, Sabatti C (2004) The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet 36:1045–1051CrossRefPubMedGoogle Scholar
  3. 3.
    Grimm T, Müller B, Müller CR, Janka M (1990) Theoretical considerations on germline mosaicism in Duchenne muscular dystrophy. J Med Genet 27:683–687PubMedGoogle Scholar
  4. 4.
    Grimm T, Meng G, Liechti-Gallati S, Bettecken T, Müller CR, Müller B (1994) On the origin of deletions and point mutations in Duchenne muscular dystrophy: most deletions arise in oogenesis and most point mutations result from events in spermatogenesis. J Med Genet 31:183–186PubMedCrossRefGoogle Scholar
  5. 5.
    Haldane JBS (1935) The rate of spontaneous mutation of a human gene. J Genet 31:317–326Google Scholar
  6. 6.
    Hauser ER, Finkelstein JE, Valle D, Brusilow SW (1990) Allopurinol-induced orotidinuria. A test for mutations at the ornithine carbamoyltransferase locus in women. N Engl J Med 322:1641–1645PubMedCrossRefGoogle Scholar
  7. 7.
    Krauss S, Wang XT (2003) The psychology of the Monty Hall problem: discovering psychological mechanisms for solving a tenacious brain teaser. J Exp Psychol Gen 132:3–22CrossRefPubMedGoogle Scholar
  8. 8.
    Leviatan T (2002) On the use of paradoxes in the teaching of probability. Proc Int Conf Teach Statistics (ICOTS6), online:
  9. 9.
    McCullough BA, Yudkoff M, Batshaw ML, Wilson JM, Raper SE, Tuchman M (2000) Genotype spectrum of ornithine transcarbamylase deficiency: correlation with the clinical and biochemical phenotype. Am J Med Genet 93:313–319CrossRefPubMedGoogle Scholar
  10. 10.
    Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318PubMedGoogle Scholar
  11. 11.
    Nicholson GA, Gardner-Medwin D, Pennington RJ, Walton JN (1979) Carrier detection in Duchenne muscular dystrophy: assessment of the effect of age on detection-rate with serum-creatine-kinase-activity. Lancet 1:692–694Google Scholar
  12. 12.
    Oexle K, Bonafé L, Steinmann B (2002) Remark on utility and error rates of the allopurinol test in detecting mild ornithine transcarbamylase deficiency. Mol Genet Metab 76:71–75CrossRefPubMedGoogle Scholar
  13. 13.
    Percy ME, Andrews DF, Brasher PMA, Rusk ACM (1987) Making the most of multiple measurements in estimating carrier probability in Duchenne muscular dystrophy: The Bayesian incorporation of repeated measurements using logistic discrimination. Am J Med Genet 26:851–861CrossRefPubMedGoogle Scholar
  14. 14.
    Strauch K, Fimmers R, Baur MP, Wienker TF (2003) How to model a complex trait. 1. General considerations and suggestions. Hum Hered 55:202–210CrossRefPubMedGoogle Scholar
  15. 15.
    Tuchman M, Matsuda I, Munnich A, Malcolm S, Strautnieks S, Briede T (1995) Proportions of spontaneous mutations in males and females with ornithine transcarbamylase deficiency. Am J Med Genet 55:67–70CrossRefPubMedGoogle Scholar
  16. 16.
    Tuchman M, Jaleel N, Morizono H, Sheehy L, Lynch MG (2002) Mutations and polymorphisms in the human ornithine transcarbamylase gene. Hum Mutat 19:93–107CrossRefPubMedGoogle Scholar
  17. 17.
    Vogel F, Motulsky AG (1997) Human genetics. Problems and approaches, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. 18.
    von Randow G (2004) Das Ziegenproblem. Denken in Wahrscheinlichkeiten. Rowohlt, HamburgGoogle Scholar
  19. 19.
    Wilson KM, Evans KA, Carter CO (1965) Creatine kinase levels in women who carry genes for three types of muscular dystrophy. BMJ:750–753Google Scholar
  20. 20.
    Young ID (1999) Introduction to risk calculation in genetic counseling. Oxford University Press, Oxford, UKGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav CarusTechnische Universität DresdenDresdenGermany

Personalised recommendations