Impact of CMV upon immune aging: facts and fiction

  • Mladen Jergović
  • Nico A. Contreras
  • Janko Nikolich-ŽugichEmail author


Aging is accompanied by significant defects in immunity and compromised responses to new, previously unencountered microbial pathogens. Most humans carry several persistent or latent viruses as they age, interacting with the host immune systems for years. In that context maybe the most studied persistent virus is Cytomegalovirus, infamous for its ability to recruit very large T cell responses which increase with age and to simultaneously evade elimination by the immune system. Here we will address how lifelong CMV infection and the immunological burden of its control might affect immune reactivity and health of the host over time.


Cytomegalovirus Latency T cells Memory inflation Aging 



Supported by the USPS award AG048021 from the NIH/NIA.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.


  1. 1.
    Brodin P, Jojic V, Gao T et al (2015) Variation in the human immune system is largely driven by non-heritable influences. Cell 160:37–47. CrossRefGoogle Scholar
  2. 2.
    Bate SL, Dollard SC, Cannon MJ (2010) Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clin Infect Dis 50:1439–1447. CrossRefGoogle Scholar
  3. 3.
    Aiello AE, Chiu YL, Frasca D (2017) How does cytomegalovirus factor into diseases of aging and vaccine responses, and by what mechanisms? GeroScience 39:261–271. CrossRefGoogle Scholar
  4. 4.
    Barton ES, White DW, Cathelyn JS et al (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447:326–329. CrossRefGoogle Scholar
  5. 5.
    Furman D, Jojic V, Sharma S et al (2015) Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med. Google Scholar
  6. 6.
    Smithey MJ, Venturi V, Davenport MP et al (2018) Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. Proc Natl Acad Sci. Google Scholar
  7. 7.
    Holtappels R, Pahl-Seibert M-F, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62Llo memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503. CrossRefGoogle Scholar
  8. 8.
    Karrer U, Sierro S, Wagner M et al (2003) Memory inflation: continuous accumulation of antiviral CD8 + T cells over time. J Immunol. Google Scholar
  9. 9.
    Komatsu H, Sierro S, Cuero VA, Klenerman P (2003) Population analysis of antiviral T cell responses using MHC class I-peptide tetramers. Clin Exp Immunol 134:9–12CrossRefGoogle Scholar
  10. 10.
    Morabito KM, Ruckwardt TJ, Bar-Haim E et al (2018) Memory inflation drives tissue-resident memory CD8 + T cell maintenance in the lung after intranasal vaccination with murine cytomegalovirus. Front Immunol 9:1861. CrossRefGoogle Scholar
  11. 11.
    Smith CJ, Turula H, Snyder CM (2014) Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog 10:e1004233. CrossRefGoogle Scholar
  12. 12.
    Munks M, Cho K, Pinto A et al (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458. CrossRefGoogle Scholar
  13. 13.
    Sylwester AW, Mitchell BL, Edgar JB et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685. CrossRefGoogle Scholar
  14. 14.
    Klenerman P, Oxenius A (2016) T cell responses to cytomegalovirus. Nat Rev Immunol 16:367CrossRefGoogle Scholar
  15. 15.
    Wertheimer AM, Bennett MS, Park B et al (2014) Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol 192:2143–2155. CrossRefGoogle Scholar
  16. 16.
    Polic B, Hengel H, Krmpotic A et al (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047–1054. CrossRefGoogle Scholar
  17. 17.
    Reddehase MJ, Balthesen M, Rapp M et al (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193. CrossRefGoogle Scholar
  18. 18.
    Reddehase MJ, Podlech J, Grzimek NKA (2002) Mouse models of cytomegalovirus latency: overview. J Clin Virol 25(Suppl 2):S23–S36CrossRefGoogle Scholar
  19. 19.
    Gordon CL, Miron M, Thome JJC et al (2017) Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection. J Exp Med. Google Scholar
  20. 20.
    Goodrum F (2016) Human cytomegalovirus latency: approaching the gordian knot. Annu Rev Virol 3:333–357. CrossRefGoogle Scholar
  21. 21.
    Mendelson M, Monard S, Sissons P, Sinclair J (1996) Detection of endogenous human cytomegalovirus in CD34 + bone marrow progenitors. J Gen Virol 77:3099–3102. CrossRefGoogle Scholar
  22. 22.
    Hahn G, Jores R, Mocarski ES (2002) Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci 95:3937–3942. CrossRefGoogle Scholar
  23. 23.
    von Laer D, Meyer-Koenig U, Serr A et al (1995) Detection of cytomegalovirus DNA in CD34 + cells from blood and bone marrow. Blood 86:4086–4090Google Scholar
  24. 24.
    Soderberg-Naucler C, Nelson JA, Allan-Yorke J et al (2002) Reactivation of latent human cytomegalovirus in CD14+ monocytes is differentiation dependent. J Virol 75:7543–7554. CrossRefGoogle Scholar
  25. 25.
    Jarvis MA, Nelson JA (2007) Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. J Virol 81:2095–2101. CrossRefGoogle Scholar
  26. 26.
    Seckert CK, Kuhnapfel B, Krause C et al (2009) Liver sinusoidal endothelial cells are a site of murine cytomegalovirus latency and reactivation. J Virol 83:8869–8884. CrossRefGoogle Scholar
  27. 27.
    Reddehase MJ, Lemmermann NAW (2019) Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol. Google Scholar
  28. 28.
    Thom JT, Oxenius A (2016) Tissue-resident memory T cells in cytomegalovirus infection. Curr Opin Virol 16:63–69. CrossRefGoogle Scholar
  29. 29.
    Turner DL, Bickham KL, Thome JJ et al (2014) Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol 7:501–510. CrossRefGoogle Scholar
  30. 30.
    van Aalderen MC, Remmerswaal EBM, ten Berge IJM, van Lier RAW (2014) Blood and beyond: properties of circulating and tissue-resident human virus-specific αβ CD8+ T cells. Eur J Immunol 44:934–944. CrossRefGoogle Scholar
  31. 31.
    Thom JT, Weber TC, Walton M, Torti N (2015) The salivary gland acts as a sink for tissue-resident memory CD8+ T cells, facilitating protection from local cytomegalovirus infection. Cell Rep. Google Scholar
  32. 32.
    Farrell HE, Lawler C, Tan CSE et al (2016) Murine cytomegalovirus exploits olfaction to enter new hosts. MBio 7:e00251-16. CrossRefGoogle Scholar
  33. 33.
    Arens R, Wang P, Sidney J et al (2008) Cutting edge: murine cytomegalovirus induces a polyfunctional CD4 T cell response. J Immunol 180:6472–6476CrossRefGoogle Scholar
  34. 34.
    Popovic B, Golemac M, Podlech J et al (2017) IL-33/ST2 pathway drives regulatory T cell dependent suppression of liver damage upon cytomegalovirus infection. PLoS Pathog 13:e1006345. CrossRefGoogle Scholar
  35. 35.
    Munks MW, Gold MC, Zajac AL et al (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766. CrossRefGoogle Scholar
  36. 36.
    O’Hara GA, Welten SPM, Klenerman P, Arens R (2012) Memory T cell inflation: understanding cause and effect. Trends Immunol 33:84–90. CrossRefGoogle Scholar
  37. 37.
    Derhovanessian E, Larbi A, Pawelec G (2009) Biomarkers of human immunosenescence: impact of cytomegalovirus infection. Curr Opin Immunol 21:440–445. CrossRefGoogle Scholar
  38. 38.
    Jackson SE, Mason GM, Okecha G et al (2014) Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells. J Virol 88:10894–10908. CrossRefGoogle Scholar
  39. 39.
    Lang A, Brien JD, Nikolich-Zugich J (2009) Inflation and long-term maintenance of CD8 T cells responding to a latent herpesvirus depend upon establishment of latency and presence of viral antigens. J Immunol 183:8077–8087. CrossRefGoogle Scholar
  40. 40.
    Cicin-Sain L, Sylwester AW, Hagen SI et al (2011) Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J Immunol 187:1722–1732. CrossRefGoogle Scholar
  41. 41.
    Vieira Braga FA, Hertoghs KML, van Lier RAW, van Gisbergen KPJM (2015) Molecular characterization of HCMV-specific immune responses: parallels between CD8+ T cells, CD4+ T cells, and NK cells. Eur J Immunol 45:2433–2445. CrossRefGoogle Scholar
  42. 42.
    Nikolich-Zugich J (2008) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8:512–522. CrossRefGoogle Scholar
  43. 43.
    Slobedman B, Mocarski ES (1999) Quantitative analysis of latent human cytomegalovirus. J Virol 73:4806–4812Google Scholar
  44. 44.
    Ljungman P, Hakki M, Boeckh M (2011) Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol Oncol Clin N Am 25:151–169. CrossRefGoogle Scholar
  45. 45.
    Kuo CP, Wu CL, Ho HT et al (2008) Detection of cytomegalovirus reactivation in cancer patients receiving chemotherapy. Clin Microbiol Infect 14:221–227. CrossRefGoogle Scholar
  46. 46.
    Kurz SK, Reddehase MJ (1999) Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol 73:8612–8622Google Scholar
  47. 47.
    Simon CO, Holtappels R, Tervo HM, Böhm V et al (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456. CrossRefGoogle Scholar
  48. 48.
    Seckert CK, Simon CO, Grießl M et al (2012) Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 201:551–566. CrossRefGoogle Scholar
  49. 49.
    Wertheim-van Dillen PME, Yong S-L, ten Berge IJM et al (2014) The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol 172:6107–6114. Google Scholar
  50. 50.
    Souquette A, Frere J, Smithey M et al (2017) A constant companion: immune recognition and response to cytomegalovirus with aging and implications for immune fitness. GeroScience 39:293–303. CrossRefGoogle Scholar
  51. 51.
    Thimme R, Appay V, Koschella M et al (2005) Increased expression of the NK cell receptor KLRG1 by virus-specific CD8 T cells during persistent antigen stimulation. J Virol 79:12112–12116. CrossRefGoogle Scholar
  52. 52.
    Nikolich-Žugich J (2018) The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 19:10–19. CrossRefGoogle Scholar
  53. 53.
    Springer KL, Weinberg A (2004) Cytomegalovirus infection in the era of HAART: fewer reactivations and more immunity. J Antimicrob Chemother 54:582–586. CrossRefGoogle Scholar
  54. 54.
    McGuinness BJ, Ferguson RM, Zhang Y et al (2002) Intra-abdominal bacterial infection reactivates latent pulmonary cytomegalovirus in immunocompetent mice. J Infect Dis 185:1395–1400. CrossRefGoogle Scholar
  55. 55.
    Cook CH, Trgovcich J, Zimmerman PD et al (2006) Lipopolysaccharide, tumor necrosis factor alpha, or interleukin-1 triggers reactivation of latent cytomegalovirus in immunocompetent mice. J Virol 80:9151–9158. CrossRefGoogle Scholar
  56. 56.
    Simon CO, Seckert CK, Dreis D et al (2005) Role for tumor necrosis factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs. J Virol 79:326–340. CrossRefGoogle Scholar
  57. 57.
    Forte E, Swaminathan S, Schroeder MW et al (2018) Tumor necrosis factor alpha induces reactivation of human cytomegalovirus independently of myeloid cell differentiation following posttranscriptional establishment of latency. MBio 9:1–15. CrossRefGoogle Scholar
  58. 58.
    Beura LK, Hamilton SE, Bi K et al (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532:512–516. CrossRefGoogle Scholar
  59. 59.
    Rector JL, Dowd JB, Loerbroks A et al (2014) Consistent associations between measures of psychological stress and CMV antibody levels in a large occupational sample. Brain Behav Immun 38:133–141. CrossRefGoogle Scholar
  60. 60.
    Leng SX, Kamil J, Purdy JG et al (2017) Recent advances in CMV tropism, latency, and diagnosis during aging. GeroScience 39:251–259. CrossRefGoogle Scholar
  61. 61.
    Vescovini R, Fagnoni FF, Telera AR et al (2014) Naïve and memory CD8 T cell pool homeostasis in advanced aging: impact of age and of antigen-specific responses to cytomegalovirus. Age (Dordr) 36:625–640. CrossRefGoogle Scholar
  62. 62.
    Smithey MJ, Li G, Venturi V et al (2012) Lifelong persistent viral infection alters the naive T cell pool, impairing CD8 T cell immunity in late life. J Immunol 189:5356–5366. CrossRefGoogle Scholar
  63. 63.
    Cicin-Sain L, Messaoudi I, Park B et al (2007) Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates. Proc Natl Acad Sci USA 104:19960–19965. CrossRefGoogle Scholar
  64. 64.
    Thompson HL, Smithey MJ, Surh CD, Nikolich-Žugich J (2017) Functional and homeostatic impact of age-related changes in lymph node stroma. Front Immunol 8:1–8. CrossRefGoogle Scholar
  65. 65.
    Nikolich-Zugich J, Li G, Uhrlaub JL et al (2012) Age-related changes in CD8 T cell homeostasis and immunity to infection. Semin Immunol 24:356–364. CrossRefGoogle Scholar
  66. 66.
    Casrouge A, Beaudoing E, Dalle S et al (2000) Size Estimate of the αβ TCR Repertoire of Naive Mouse Splenocytes. J Immunol 164:5782–5787. CrossRefGoogle Scholar
  67. 67.
    Qi Q, Liu Y, Cheng Y et al (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci 111:13139–13144. CrossRefGoogle Scholar
  68. 68.
    Weekes MP, Carmichael AJ, Wills MR et al (1999) Human CD28−CD8+ T cells contain greatly expanded functional virus-specific memory CTL clones. J Immunol 162:7569–7577. Google Scholar
  69. 69.
    Gillespie GMA, Murphy M, Moss PAH et al (2002) Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8+ T lymphocytes in healthy seropositive donors. J Virol 74:8140–8150. CrossRefGoogle Scholar
  70. 70.
    Khan N, Shariff N, Cobbold M et al (2019) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. Google Scholar
  71. 71.
    Britanova OV, Putintseva EV, Shugay M et al (2019) Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. Google Scholar
  72. 72.
    Robins HS, Campregher PV, Srivastava SK et al (2009) Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114:4099–4107. CrossRefGoogle Scholar
  73. 73.
    Thome JJC, Grinshpun B, Kumar BV et al (2016) Long-term maintenance of human naïve T cells through in situ homeostasis in lymphoid tissue sites. Sci Immunol 1:eaah6506. CrossRefGoogle Scholar
  74. 74.
    Yager EJ, Ahmed M, Lanzer K et al (2008) Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 205:711–723. CrossRefGoogle Scholar
  75. 75.
    Quinn KM, Zaloumis SG, Cukalac T et al (2016) Heightened self-reactivity associated with selective survival, but not expansion, of naïve virus-specific CD8+ T cells in aged mice. Proc Natl Acad Sci USA 113:1333–1338. CrossRefGoogle Scholar
  76. 76.
    Rudd BD, Venturi V, Davenport MP, Nikolich-Zugich J (2011) Evolution of the antigen-specific CD8+ TCR repertoire across the life span: evidence for clonal homogenization of the old TCR repertoire. J Immunol 186:2056–2064. CrossRefGoogle Scholar
  77. 77.
    Pawelec G, Akbar A, Caruso C et al (2004) Is immunosenescence infectious? Trends Immunol 25:406–410. CrossRefGoogle Scholar
  78. 78.
    Tu W, Rao S (2016) Mechanisms underlying T cell immunosenescence: aging and cytomegalovirus infection. Front Microbiol 7:1–12. CrossRefGoogle Scholar
  79. 79.
    Cicin-Sain L, Brien JD, Uhrlaub JL et al (2012) Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog 8:e1002849. CrossRefGoogle Scholar
  80. 80.
    Mekker A, Tchang VS, Haeberli L et al (2012) Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog. Google Scholar
  81. 81.
    Marandu TF, Oduro JD, Borkner L et al (2015) Immune protection against virus challenge in aging mice is not affected by latent herpesviral infections. J Virol 89:11715–11717. CrossRefGoogle Scholar
  82. 82.
    Hislop AD, Buckley CD, Alan B et al (2005) Tonsillar homing of Epstein–Barr virus—specific CD8+ T cells and the virus–host balance Find the latest version : Tonsillar homing of Epstein–Barr virus—specific CD8+ T cells and the virus-host balance. J Clin Investig 115:2546–2555. CrossRefGoogle Scholar
  83. 83.
    Sierro S, Rothkopf R, Klenerman P (2005) Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur J Immunol 35:1113–1123. CrossRefGoogle Scholar
  84. 84.
    Jackson SE, Sedikides GX, Okecha G et al (2019) Generation, maintenance and tissue distribution of T cell responses to human cytomegalovirus in lytic and latent infection. Med Microbiol Immunol. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mladen Jergović
    • 1
  • Nico A. Contreras
    • 1
  • Janko Nikolich-Žugich
    • 1
    • 2
    Email author
  1. 1.Department of Immunobiology and the University of Arizona Center on AgingUniversity of Arizona College of Medicine-TucsonTucsonUSA
  2. 2.University of Arizona College of Medicine-TucsonTucsonUSA

Personalised recommendations