Advertisement

Function of the cargo sorting dileucine motif in a cytomegalovirus immune evasion protein

  • Annette Fink
  • Snježana Mikuličić
  • Franziska Blaum
  • Matthias J. ReddehaseEmail author
  • Luise FlorinEmail author
  • Niels A. W. LemmermannEmail author
Original Investigation
  • 65 Downloads

Abstract

As an immune evasion mechanism, cytomegaloviruses (CMVs) have evolved proteins that interfere with cell surface trafficking of MHC class-I (MHC-I) molecules to tone down recognition by antiviral CD8 T cells. This interference can affect the trafficking of recently peptide-loaded MHC-I from the endoplasmic reticulum to the cell surface, thus modulating the presentation of viral peptides, as well as the recycling of pre-existing cell surface MHC-I, resulting in reduction of the level of overall MHC-I cell surface expression. Murine cytomegalovirus (mCMV) was paradigmatic in that it led to the discovery of this immune evasion strategy of CMVs. Members of its m02-m16 gene family code for type-I transmembrane glycoproteins, proven or predicted, most of which carry cargo sorting motifs in their cytoplasmic, C-terminal tail. For the m06 gene product m06 (gp48), the cargo has been identified as being MHC-I, which is linked by m06 to cellular adapter proteins AP-1A and AP-3A through the dileucine motif EPLARLL. Both APs are involved in trans-Golgi network (TGN) cargo sorting and, based on transfection studies, their engagement by the dileucine motif was proposed to be absolutely required to prevent MHC-I exposure at the cell surface. Here, we have tested this prediction in an infection system with the herein newly described recombinant virus mCMV-m06AA, in which the dileucine motif is destroyed by replacing EPLARLL with EPLARAA. This mutation has a phenotype in that the transition of m06-MHC-I complexes from early endosomes (EE) to late endosomes (LE)/lysosomes for degradation is blocked. Consistent with the binding of the MHC-I α-chain to the luminal domain of m06, the m06-mediated disposal of MHC-I did not require the β2m chain of mature MHC-I. Unexpectedly, however, disconnecting MHC-I cargo from AP-1A/3A by the motif mutation in m06 had no notable rescuing impact on overall cell surface MHC-I, though it resulted in some improvement of the presentation of viral antigenic peptides by recently peptide-loaded MHC-I. Thus, the current view on the mechanism by which m06 mediates immune evasion needs to be revised. While the cargo sorting motif is critically involved in the disposal of m06-bound MHC-I in the endosomal/lysosomal pathway at the stage of EE to LE transition, this motif-mediated disposal is not the critical step by which m06 causes immune evasion. We rather propose that engagement of AP-1A/3A by the cargo sorting motif in m06 routes the m06-MHC-I complexes into the endosomal pathway and thereby detracts them from the constitutive cell surface transport.

Keywords

Adapter proteins (AP-1, AP-3) Antigen presentation Cargo sorting Cytomegalovirus Dileucine motif Early endosomes (EE) Endosomal pathway Endosomal recycling compartment (ERC) Late endosomes (LE) Immune evasion MHC class-I MHC class-I trafficking m06 protein Trans-Golgi network (TGN) 

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), SFB490, individual project E4 “Antigen presentation under the influence of murine cytomegalovirus immune evasion genes“ (A.F.), SFB1292, individual project TP11 “Viral evasion of innate and adaptive immune cells and inbetweeners” (M.J.R. and N.A.W.L.) and DFG FL 696/2-1 and FL 696/3-1 (S.M. and L.F.). The authors appreciate the skilled technical contributions made by Angélique Renzaho (molecular cloning) and Kirsten Freitag (cytofluorometric analysis), Institute for Virology, and Fatima Boukhallouk (biochemistry), Institute for Medical Microbiology and Hygiene. For expert help and advice with CLSM analysis we thank Dr. D. Strand, ‘Confocal Laser Scanning Microscope Core Facility’ of the Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University Mainz. For helping us by critical discussion of the interpretation of data and by finalizing the cargo sorting sketches, special thanks goes to Pero Lucin, Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal experiments were approved according to German federal law §8 Abs. 1 TierSchG by the ethics committee of the Landesuntersuchungsamt Rheinland-Pfalz, permission number 177-07/G 14-1-015.

References

  1. 1.
    Rawlinson W, Farrell H, Barrell B (1996) Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849Google Scholar
  2. 2.
    Fink A, Blaum F, Babic Cac M, Ebert S, Lemmermann NA, Reddehase MJ (2015) An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 ‘adapter adapter’ protein m04/gp34 antagonizes virus evasion of natural killer cells. Med Microbiol Immunol 204:383–394.  https://doi.org/10.1007/s00430-015-0414-1 CrossRefGoogle Scholar
  3. 3.
    Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Campbell AE, Koszinowski UH, Hill AB, Ploegh HL (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16:685–694.  https://doi.org/10.1093/emboj/16.4.685 CrossRefGoogle Scholar
  4. 4.
    Kavanagh DG, Koszinowski UH, Hill AB (2001) The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J Immunol 167:3894CrossRefGoogle Scholar
  5. 5.
    Lu X, Kavanagh DG, Hill AB (2006) Cellular and molecular requirements for association of the murine cytomegalovirus protein m4/gp34 with major histocompatibility complex class I molecules. J Virol 80:6048–6055.  https://doi.org/10.1128/JVI.00534-06 CrossRefGoogle Scholar
  6. 6.
    Berry R, Vivian JP, Deuss FA, Balaji GR, Saunders PM, Lin J, Littler DR, Brooks AG, Rossjohn J (2014) The structure of the cytomegalovirus-encoded m04 glycoprotein, a prototypical member of the m02 family of immunoevasins. J Biol Chem 289:23753–23763.  https://doi.org/10.1074/jbc.M114.584128 CrossRefGoogle Scholar
  7. 7.
    Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18:1081–1091.  https://doi.org/10.1093/emboj/18.4.1081 CrossRefGoogle Scholar
  8. 8.
    Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844.  https://doi.org/10.1038/nri932 CrossRefGoogle Scholar
  9. 9.
    Doom C, Hill AB (2008) MHC class I immune evasion in MCMV infection. Med Microbiol Immunol 197:191–204.  https://doi.org/10.1007/s00430-008-0089-y CrossRefGoogle Scholar
  10. 10.
    Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9:503–513.  https://doi.org/10.1038/nri2575 CrossRefGoogle Scholar
  11. 11.
    Lemmermann NA, Böhm V, Holtappels R, Reddehase MJ (2011) In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: facts and thoughts based on murine models. Virus Res 157:161–174.  https://doi.org/10.1016/j.virusres.2010.09.022 CrossRefGoogle Scholar
  12. 12.
    Lemmermann NA, Fink A, Podlech J, Ebert S, Wilhelmi V, Böhm V, Holtappels R, Reddehase MJ (2012) Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 201:497–512.  https://doi.org/10.1007/s00430-012-0257-y CrossRefGoogle Scholar
  13. 13.
    Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816CrossRefGoogle Scholar
  14. 14.
    Babic M, Pyzik M, Zafirova B, Mitrovic M, Butorac V, Lanier LL, Krmpotic A, Vidal S, Jonjic S (2010) Cytomegalovirus immunoevasin reveals the physiological role of “missing self” recognition in natural killer cell dependent virus control in vivo. J Exp Med 207:2663–2673.  https://doi.org/10.1084/jem.20100921 CrossRefGoogle Scholar
  15. 15.
    Vidal S, Krmpotic A, Pyzik M, Jonjic S (2013) Innate immunity to cytomegalovirus in the murine model. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 192–214Google Scholar
  16. 16.
    Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624.  https://doi.org/10.1128/JVI.00723-06 CrossRefGoogle Scholar
  17. 17.
    Pinto A, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234CrossRefGoogle Scholar
  18. 18.
    Lemmermann NA, Gergely K, Böhm V, Deegen P, Däubner T, Reddehase MJ (2010) Immune evasion proteins of murine cytomegalovirus preferentially affect cell surface display of recently generated peptide presentation complexes. J Virol 84:1221–1236.  https://doi.org/10.1128/JVI.02087-09 CrossRefGoogle Scholar
  19. 19.
    Aguilar RC, Boehm M, Gorshkova I, Crouch RJ, Tomita K, Saito T, Ohno H, Bonifacino JS (2001) Signal-binding specificity of the mu4 subunit of the adapter protein complex AP-4. J Biol Chem 276:13145–13152.  https://doi.org/10.1074/jbc.M010591200 CrossRefGoogle Scholar
  20. 20.
    Kielczewska A, Pyzik M, Sun T, Krmpotic A, Lodoen MB, Munks MW, Babic M, Hill AB, Koszinowski UH, Jonjic S, Lanier LL, Vidal SM (2009) Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J Exp Med 206:515–523.  https://doi.org/10.1084/jem.20080954 CrossRefGoogle Scholar
  21. 21.
    Sgourakis NG, Natarajan K, Ying J, Vogeli B, Boyd LF, Margulies DH, Bax A (2014) The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 2:1263–1273.  https://doi.org/10.1016/j.str.2014.05.018 CrossRefGoogle Scholar
  22. 22.
    Reusch U, Bernhard O, Koszinowski UH, Schu P (2002) AP-1A and AP-3A lysosomal sorting functions. Traffic 3:752–761CrossRefGoogle Scholar
  23. 23.
    Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 94:14759–14763CrossRefGoogle Scholar
  24. 24.
    Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73:7056–7060Google Scholar
  25. 25.
    Fink A, Lemmermann NA, Gillert-Marien D, Thomas D, Freitag K, Böhm V, Wilhelmi V, Reifenberg K, Reddehase MJ, Holtappels R (2012) Antigen presentation under the influence of ‘immune evasion’ proteins and its modulation by interferon-gamma: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 201:513–525.  https://doi.org/10.1007/s00430-012-0256-z CrossRefGoogle Scholar
  26. 26.
    Podlech J, Holtappels R, Grzimek NKA, Reddehase MJ (2002) Animal models: murine cytomegalovirus. In: Kaufmann SHE, Kabelitz D (eds) Methods in microbiology, vol 32. Immunology of infection. Academic Press, London, pp 493–525Google Scholar
  27. 27.
    Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987Google Scholar
  28. 28.
    Tischer BK, Smith GA, Osterrieder N (2010) En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol 634:421–430.  https://doi.org/10.1007/978-1-60761-652-8_30 CrossRefGoogle Scholar
  29. 29.
    Hammer Q, Rückert T, Borst EM, Dunst J, Haubner A, Durek P, Heinrich F, Gasparoni G, Babic M, Tomic A, Pietra G, Nienen M, Blau IW, Hofmann J, Na IK, Prinz I, Koenecke C, Hemmati P, Babel N, Arnold R, Walter J, Thurley K, Mashreghi MF, Messerle M, Romagnani C (2018) Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol 19:453–463.  https://doi.org/10.1038/s41590-018-0082-6 CrossRefGoogle Scholar
  30. 30.
    Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology, vol 37. Immunology of infection. Academic Press, London, pp 369–420Google Scholar
  31. 31.
    Chojnacki S, Cowley A, Lee J, Foix A, Lopez R (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45:W550–W553.  https://doi.org/10.1093/nar/gkx273 CrossRefGoogle Scholar
  32. 32.
    Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534.  https://doi.org/10.1099/vir.0.018580-0 CrossRefGoogle Scholar
  33. 33.
    Reddehase MJ, Rothbard JB, Koszinowski UH (1989) A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653.  https://doi.org/10.1038/337651a0 CrossRefGoogle Scholar
  34. 34.
    Pahl-Seibert MF, Jülch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413.  https://doi.org/10.1128/JVI.79.9.5400-5413.2005 CrossRefGoogle Scholar
  35. 35.
    Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164CrossRefGoogle Scholar
  36. 36.
    Böhm V, Simon CO, Podlech J, Seckert CK, Gendig G, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion pardox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82:11637–11650CrossRefGoogle Scholar
  37. 37.
    Aniento F, Gruenberg J (2004) Subcellular fractionation of tissue culture cells. Curr Protoc Protein Sci. 32:4.3.1–4.3.21.  https://doi.org/10.1002/0471140864.ps0403s32 Google Scholar
  38. 38.
    Scheffer K, Popa-Wagner R, Florin L (2013) Isolation and characterization of pathogen-bearing endosomes enable analysis of endosomal escape and identification of new cellular cofactors of infection. In: Bailer SM, Lieber D (eds) Methods in molecular biology, vol 1064. Virus–host interactions. Humana Press, Totowa, pp 101–113.  https://doi.org/10.1007/978-1-62703-601-6_7 Google Scholar
  39. 39.
    Gräßel L, Fast LA, Scheffer KD, Boukhallouk F, Spoden GA, Tenzer S, Boller K, Bago R, Rajesh S, Overduin M, Berditchevski F, Florin L (2016) The CD63-syntenin-1 complex controls post-endocytic trafficking of oncogenic human papillomaviruses. Sci Rep 6:32337.  https://doi.org/10.1038/srep32337 CrossRefGoogle Scholar
  40. 40.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  41. 41.
    Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66CrossRefGoogle Scholar
  42. 42.
    Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296CrossRefGoogle Scholar
  43. 43.
    Fink A, Renzaho A, Reddehase M, Lemmermann NAW (2013) The p36 isoform of murine cytomegalovirus m152 protein suffices for mediating innate and adaptive immune evasion. Viruses 5:3171–3191.  https://doi.org/10.3390/v5123171 CrossRefGoogle Scholar
  44. 44.
    Del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 172:729–738CrossRefGoogle Scholar
  45. 45.
    Bubeck A, Reusch U, Wagner M, Ruppert T, Muranyi W, Kloetzel PM, Koszinowski UH (2002) The glycoprotein gp48 of murine cytomegalovirus proteasome-dependent cytosolic dislocation and degradation. J Biol Chem 277:2216–2224.  https://doi.org/10.1074/jbc.M104178200 CrossRefGoogle Scholar
  46. 46.
    Kučić N, Tomaš MI, Mahmutefendić H, Blagojević G, Luči P (2012) Early endosomal retention of murine cytomegalovirus m06 protein. Croat Chem Acta 85:213–221.  https://doi.org/10.5562/cca1816 CrossRefGoogle Scholar
  47. 47.
    Lučin P, Mahmutefendić H, Blagojević Zagorac G, Ilić Tomaš M (2015) Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 12:154–169.  https://doi.org/10.1038/cmi.2014.85 CrossRefGoogle Scholar
  48. 48.
    Karleuša L, Mahmutefendić H, Tomaš MI, Zagorac GB, Lučin P (2018) Landmarks of endosomal remodeling in the early phase of cytomegalovirus infection. Virology 515:108–122.  https://doi.org/10.1016/j.virol.2017.12.001 CrossRefGoogle Scholar
  49. 49.
    Lučin P, Kareluša L, Blagojević Zagorac G, Mahmutefendić Lučin H, Pavišić V, Jug Vučko N, Lukanović Jurić S, Marcelić M, Lisnić B, Jonjić S (2018) Cytomegaloviruses exploit recycling rab proteins in the sequential establishment of the assembly compartment. Front Cell Dev Biol 6:165.  https://doi.org/10.3389/fcell.2018.00165 CrossRefGoogle Scholar
  50. 50.
    Sgourakis NG, May NA, Boyd LF, Ying J, Bax A, Margulies DH (2015) A novel MHC-I surface targeted for binding by the MCMV m06 immunoevasin revealed by solution NMR. J Biol Chem 290:28857–28868.  https://doi.org/10.1074/jbc.M115.689661 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for VirologyUniversity Medical Center of the Johannes Gutenberg-University Mainz and Research Center for Immunotherapy (FZI)MainzGermany
  2. 2.Transplantation Immunology, Institute of ImmunologyHeidelberg University HospitalHeidelbergGermany

Personalised recommendations