Vaccine vectors: the bright side of cytomegalovirus

  • Andrea C. Méndez
  • Cristina Rodríguez-Rojas
  • Margarita Del ValEmail author


Cytomegaloviruses (CMVs) present singular features that are particularly advantageous for human vaccine development, a current medical need. Vaccines that induce neutralizing antibodies are among the most successful and efficacious available. However, chronic and persistent human infections, pathogens with high variability of exposed proteins, as well as tumors, highlight the need for developing novel vaccines inducing strong and long-lasting cellular immune responses mediated by effector or effector memory CD8+ cytotoxic T lymphocytes. CMVs induce the most potent CD8+ T lymphocyte response to a pathogen known in each of their hosts, maintain and even increase it for life for selected antigens, in what is known as the ever growing inflationary memory, and maintain an effector memory status due to recent and repeated antigen stimulation that endows these inflationary T lymphocytes with superior and faster protective potency. In addition to these CMV singularities, this family of viruses has two more common favorable features: they can superinfect an already infected host, which is needed in face of the high CMV prevalence, and they can harbor very large segments of foreign DNA at many different genomic sites. All these properties endow CMVs with a singular potential to be used as human vaccine vectors. Current developments with most of the recombinant CMV-based vaccine candidates that have been tested in animal models against clinically relevant viral and bacterial infections and for their use in tumor immunotherapy are reviewed herein. Since CMV vectors should be designed to avoid the risk of disease in immunocompromised individuals, special attention is also paid to attenuated vectors. Taken together, the results support the future use of CMV-based vaccine vectors to induce protective CD8+ T lymphocyte responses in humans, mainly against viral infections and as anti-tumor vaccines.


Cytomegalovirus Vaccine vectors CD8+ T lymphocytes Virus Tumor Immunotherapy 



The work in the laboratory was supported by Spanish Ministerio de Economía y Competitividad grants SAF2013-48754-C2-1-R and SAF2016-79607R and by Comunidad de Madrid grant B2017/BMD-3731 to M.D.V. and cofinanced by the European Regional Development Fund and the European Social Fund. A.C.M. was supported by Ayuda para contrato predoctoral para la formación de doctores 2014 BES-2014-068148 from Spanish Ministerio de Economía y Competitividad. C.R.R. was supported by Ayuda para la contratación de investigadores predoctorales PEJD-2017-PRE/BMD-4692 from Spanish Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid and cofinanced by the European Social Fund and the Youth Employment Initiative, and by Contrato predoctoral para la Formación de Profesorado Universitario FPU17/01914 from the Spanish Ministerio de Ciencia, Innovación y Universidades. Institutional grants from the Fundación Ramón Areces and Banco de Santander to the CBMSO are also acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Butler NS, Nolz JC, Harty JT (2011) Immunologic considerations for generating memory CD8 T cells through vaccination. Cell Microbiol 13:925–933CrossRefGoogle Scholar
  2. 2.
    Zinkernagel RM (2003) On natural and artificial vaccinations. Annu Rev Immunol 21:515–546CrossRefGoogle Scholar
  3. 3.
    Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4 + and CD8 + T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685CrossRefGoogle Scholar
  4. 4.
    Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8 + T cells over time. J Immunol 170:2022–2029 [Correction appeared in J. Immunol. 171, 3895 (2003)]CrossRefGoogle Scholar
  5. 5.
    Jarvis MA, Hansen SG, Nelson JA, Picker LJ, Fruh K (2013) Vaccine vectors using the unique biology and immunology of cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Chap. 21, vol II. Caister Academic Press, Norfolk, pp 450–463Google Scholar
  6. 6.
    Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503CrossRefGoogle Scholar
  7. 7.
    Karrer U, Wagner M, Sierro S, Oxenius A, Hengel H, Dumrese T, Freigang S, Koszinowski UH, Phillips RE, Klenerman P (2004) Expansion of protective CD8 + T-cell responses driven by recombinant cytomegaloviruses. J Virol 78:2255–2264CrossRefGoogle Scholar
  8. 8.
    Sierro S, Rothkopf R, Klenerman P (2005) Evolution of diverse antiviral CD8 + T cell populations after murine cytomegalovirus infection. Eur J Immunol 35:1113–1123CrossRefGoogle Scholar
  9. 9.
    Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458CrossRefGoogle Scholar
  10. 10.
    Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507CrossRefGoogle Scholar
  11. 11.
    Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB (2008) Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29:650–659CrossRefGoogle Scholar
  12. 12.
    Masopust D, Ha SJ, Vezys V, Ahmed R (2006) Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 177:831–839CrossRefGoogle Scholar
  13. 13.
    Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763CrossRefGoogle Scholar
  14. 14.
    Welten SPM, Redeker A, Toes REM, Arens R (2016) Viral persistence induces antibody inflation without altering antibody avidity. J Virol 90:4402–4411CrossRefGoogle Scholar
  15. 15.
    Lemiale F, Korokhov N (2009) Lentiviral vectors for HIV disease prevention and treatment. Vaccine 27:3443–3449CrossRefGoogle Scholar
  16. 16.
    Picker LJ, Hansen SG, Lifson JD (2012) New paradigms for HIV/AIDS vaccine development. Annu Rev Med 63:95–111CrossRefGoogle Scholar
  17. 17.
    Bolinger B, Sims S, O’Hara G, de Lara C, Tchilian E, Firner S, Engeler D, Ludewig B, Klenerman P (2013) A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector. J Immunol 190:4162–4174CrossRefGoogle Scholar
  18. 18.
    Colston JM, Bolinger B, Cottingham MG, Gilbert S, Klenerman P (2016) Modification of antigen impacts on memory quality after adenovirus vaccination. J Immunol 196:3354–3363CrossRefGoogle Scholar
  19. 19.
    Bett AJ, Haddara W, Prevec L, Graham FL (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 91:8802–8806CrossRefGoogle Scholar
  20. 20.
    Kenneson A, Cannon MJ (2007) Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 17:253–276CrossRefGoogle Scholar
  21. 21.
    Snyder CM, Cho KS, Bonnett EL, Allan JE, Hill AB (2011) Sustained CD8 + T cell memory inflation after infection with a single-cycle cytomegalovirus. PLoS Pathog 7:e1002295CrossRefGoogle Scholar
  22. 22.
    Wang D, Freed DC, He X, Li F, Tang A, Cox KS, Dubey SA, Cole S, Medi MB, Liu Y, Xu J, Zhang ZQ, Finnefrock AC, Song L, Espeseth AS, Shiver JW, Casimiro DR, Fu TM (2016) A replication-defective human cytomegalovirus vaccine for prevention of congenital infection. Sci Transl Med 8:362ra145CrossRefGoogle Scholar
  23. 23.
    Cicin-Sain L, Bubic I, Schnee M, Ruzsics Z, Mohr C, Jonjic S, Koszinowski UH (2007) Targeted deletion of regions rich in immune-evasive genes from the cytomegalovirus genome as a novel vaccine strategy. J Virol 81:13825–13834CrossRefGoogle Scholar
  24. 24.
    Lisnic VJ, Krmpotic A, Jonjic S (2010) Modulation of natural killer cell activity by viruses. Curr Opin Microbiol 13:530–539CrossRefGoogle Scholar
  25. 25.
    Slavuljica I, Busche A, Babic M, Mitrovic M, Gasparovic I, Cekinovic D, Markova Car E, Pernjak Pugel E, Cikovic A, Lisnic VJ, Britt WJ, Koszinowski U, Messerle M, Krmpotic A, Jonjic S (2010) Recombinant mouse cytomegalovirus expressing a ligand for the NKG2D receptor is attenuated and has improved vaccine properties. J Clin Invest 120:4532–4545CrossRefGoogle Scholar
  26. 26.
    Markiewicz MA, Carayannopoulos LN, Naidenko OV, Matsui K, Burack WR, Wise EL, Fremont DH, Allen PM, Yokoyama WM, Colonna M, Shaw AS (2005) Costimulation through NKG2D enhances murine CD8 + CTL function: similarities and differences between NKG2D and CD28 costimulation. J Immunol 175:2825–2833CrossRefGoogle Scholar
  27. 27.
    Del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 176:729–738CrossRefGoogle Scholar
  28. 28.
    Ziegler H, Thäle R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66CrossRefGoogle Scholar
  29. 29.
    Bohm V, Simon CO, Podlech J, Seckert CK, Gendig D, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion paradox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82:11637–11650CrossRefGoogle Scholar
  30. 30.
    Del Val M, Schlicht HJ, Volkmer H, Messerle M, Reddehase MJ, Koszinowski UH (1991) Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. J Virol 65:3641–3646Google Scholar
  31. 31.
    Trsan T, Busche A, Abram M, Wensveen FM, Lemmermann NA, Arapovic M, Babic M, Tomic A, Golemac M, Brinkmann MM, Jager W, Oxenius A, Polic B, Krmpotic A, Messerle M, Jonjic S (2013) Superior induction and maintenance of protective CD8 T cells in mice infected with mouse cytomegalovirus vector expressing RAE-1gamma. Proc Natl Acad Sci USA 110:16550–16555CrossRefGoogle Scholar
  32. 32.
    Trsan T, Vukovic K, Filipovic P, Brizic AL, Lemmermann NAW, Schober K, Busch DH, Britt WJ, Messerle M, Krmpotic A, Jonjic S (2017) Cytomegalovirus vector expressing RAE-1gamma induces enhanced anti-tumor capacity of murine CD8+ T cells. Eur J Immunol 47:1354–1367CrossRefGoogle Scholar
  33. 33.
    Hirsl L, Brizic I, Jenus T, Juranic Lisnic V, Reichel JJ, Jurkovic S, Krmpotic A, Jonjic S (2018) Murine CMV expressing the high affinity NKG2D ligand MULT-1: a model for the development of cytomegalovirus-based vaccines. Front Immunol 9:991CrossRefGoogle Scholar
  34. 34.
    Rizvanov AA, van Geelen AG, Morzunov S, Otteson EW, Bohlman C, Pari GS, St Jeor SC (2003) Generation of a recombinant cytomegalovirus for expression of a hantavirus glycoprotein. J Virol 77:12203–12210CrossRefGoogle Scholar
  35. 35.
    Rizvanov AA, Khaiboullina SF, van Geelen AG, St Jeor SC (2006) Replication and immunoactivity of the recombinant Peromyscus maniculatus cytomegalovirus expressing hantavirus G1 glycoprotein in vivo and in vitro. Vaccine 24:327–334CrossRefGoogle Scholar
  36. 36.
    Hooper JW, Josleyn M, Ballantyne J, Brocato R (2013) A novel Sin Nombre virus DNA vaccine and its inclusion in a candidate pan-hantavirus vaccine against hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Vaccine 31:4314–4321CrossRefGoogle Scholar
  37. 37.
    Walker BD, Burton DR (2008) Toward an AIDS vaccine. Science 320:760–764CrossRefGoogle Scholar
  38. 38.
    Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, McElrath MJ, Casimiro DR, Gottesdiener KM, Chodakewitz JA, Corey L, Robertson MN (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–1893CrossRefGoogle Scholar
  39. 39.
    Duerr A, Huang Y, Buchbinder S, Coombs RW, Sanchez J, del Rio C, Casapia M, Santiago S, Gilbert P, Corey L, Robertson MN (2012) Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (step study). J Infect Dis 206:258–266CrossRefGoogle Scholar
  40. 40.
    Garcia F, Bernaldo de Quiros JC, Gomez CE, Perdiguero B, Najera JL, Jimenez V, Garcia-Arriaza J, Guardo AC, Perez I, Diaz-Brito V, Conde MS, Gonzalez N, Alvarez A, Alcami J, Jimenez JL, Pich J, Arnaiz JA, Maleno MJ, Leon A, Munoz-Fernandez MA, Liljestrom P, Weber J, Pantaleo G, Gatell JM, Plana M, Esteban M (2011) Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: a phase I clinical trial (RISVAC02). Vaccine 29:8309–8316CrossRefGoogle Scholar
  41. 41.
    Gomez CE, Najera JL, Perdiguero B, Garcia-Arriaza J, Sorzano CO, Jimenez V, Gonzalez-Sanz R, Jimenez JL, Munoz-Fernandez MA, Lopez Bernaldo de Quiros JC, Guardo AC, Garcia F, Gatell JM, Plana M, Esteban M (2011) The HIV/AIDS vaccine candidate MVA-B administered as a single immunogen in humans triggers robust, polyfunctional, and selective effector memory T cell responses to HIV-1 antigens. J Virol 85:11468–11478CrossRefGoogle Scholar
  42. 42.
    Guardo AC, Gomez CE, Diaz-Brito V, Pich J, Arnaiz JA, Perdiguero B, Garcia-Arriaza J, Gonzalez N, Sorzano COS, Jimenez L, Jimenez JL, Munoz-Fernandez MA, Gatell JM, Alcami J, Esteban M, de Quiros JC, Garcia F, Plana M (2017) Lopez Bernaldo. Safety and vaccine-induced HIV-1 immune responses in healthy volunteers following a late MVA-B boost 4 years after the last immunization. PLoS One 12:e0186602CrossRefGoogle Scholar
  43. 43.
    Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD, Legasse AW, Axthelm MK, Oswald K, Trubey CM, Piatak M Jr, Lifson JD, Nelson JA, Jarvis MA, Picker LJ (2009) Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 15:293–299CrossRefGoogle Scholar
  44. 44.
    Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, Whizin N, Oswald K, Shoemaker R, Swanson T, Legasse AW, Chiuchiolo MJ, Parks CL, Axthelm MK, Nelson JA, Jarvis MA, Piatak M Jr, Lifson JD, Picker LJ (2011) Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473:523–527CrossRefGoogle Scholar
  45. 45.
    Hansen SG, Piatak M Jr, Ventura AB, Hughes CM, Gilbride RM, Ford JC, Oswald K, Shoemaker R, Li Y, Lewis MS, Gilliam AN, Xu G, Whizin N, Burwitz BJ, Planer SL, Turner JM, Legasse AW, Axthelm MK, Nelson JA, Fruh K, Sacha JB, Estes JD, Keele BF, Edlefsen PT, Lifson JD, Picker LJ (2013) Immune clearance of highly pathogenic SIV infection. Nature 502:100–104CrossRefGoogle Scholar
  46. 46.
    Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, Gilbride RM, Lewis MS, Gilliam AN, Ventura AB, Malouli D, Xu G, Richards R, Whizin N, Reed JS, Hammond KB, Fischer M, Turner JM, Legasse AW, Axthelm MK, Edlefsen PT, Nelson JA, Lifson JD, Fruh K, Picker LJ (2013) Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340:1237874CrossRefGoogle Scholar
  47. 47.
    Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, Ventura AB, Reed JS, Gilbride RM, Ainslie E, Morrow DW, Ford JC, Selseth AN, Pathak R, Malouli D, Legasse AW, Axthelm MK, Nelson JA, Gillespie GM, Walters LC, Brackenridge S, Sharpe HR, Lopez CA, Fruh K, Korber BT, McMichael AJ, Gnanakaran S, Sacha JB, Picker LJ (2016) Broadly targeted CD8(+) T cell responses restricted by major histocompatibility complex E. Science 351:714–720CrossRefGoogle Scholar
  48. 48.
    Suarez NM, Lau B, Kemble GM, Lee R, Mocarski ES, Wilkinson GWG, Adler SP, McVoy MA, Davison AJ (2017) Genomic analysis of chimeric human cytomegalovirus vaccine candidates derived from strains Towne and Toledo. Virus Genes 53:650–655CrossRefGoogle Scholar
  49. 49.
    Murray SE, Nesterenko PA, Vanarsdall AL, Munks MW, Smart SM, Veziroglu EM, Sagario LC, Lee R, Claas FHJ, Doxiadis IIN, McVoy MA, Adler SP, Hill AB (2017) Fibroblast-adapted human CMV vaccines elicit predominantly conventional CD8 T cell responses in humans. J Exp Med 214:1889–1899CrossRefGoogle Scholar
  50. 50.
    Fruh K, Picker L (2017) CD8 + T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination. Curr Opin Immunol 47:52–56CrossRefGoogle Scholar
  51. 51.
    Heineman TC, Schleiss M, Bernstein DI, Spaete RR, Yan L, Duke G, Prichard M, Wang Z, Yan Q, Sharp MA, Klein N, Arvin AM, Kemble G (2006) A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimeric vaccines. J Infect Dis 193:1350–1360CrossRefGoogle Scholar
  52. 52.
    Adler SP, Manganello AM, Lee R, McVoy MA, Nixon DE, Plotkin S, Mocarski E, Cox JH, Fast PE, Nesterenko PA, Murray SE, Hill AB, Kemble G (2016) A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimera vaccines in cytomegalovirus-seronegative men. J Infect Dis 214:1341–1348CrossRefGoogle Scholar
  53. 53.
    Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, Carroll MW, Dean NE, Diatta I, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S, Gsell PS, Hossmann S, Watle SV, Konde MK, Keita S, Kone S, Kuisma E, Levine MM, Mandal S, Mauget T, Norheim G, Riveros X, Soumah A, Trelle S, Vicari AS, Rottingen JA, Kieny MP (2017) Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet 389:505–518CrossRefGoogle Scholar
  54. 54.
    Regules JA, Beigel JH, Paolino KM, Voell J, Castellano AR, Hu Z, Munoz P, Moon JE, Ruck RC, Bennett JW, Twomey PS, Gutierrez RL, Remich SA, Hack HR, Wisniewski ML, Josleyn MD, Kwilas SA, Van Deusen N, Mbaya OT, Zhou Y, Stanley DA, Jing W, Smith KS, Shi M, Ledgerwood JE, Graham BS, Sullivan NJ, Jagodzinski LL, Peel SA, Alimonti JB, Hooper JW, Silvera PM, Martin BK, Monath TP, Ramsey WJ, Link CJ, Lane HC, Michael NL, Davey RT Jr, Thomas SJ (2017) A recombinant vesicular stomatitis virus ebola vaccine. N Engl J Med 376:330–341CrossRefGoogle Scholar
  55. 55.
    Jones SM, Feldmann H, Stroher U, Geisbert JB, Fernando L, Grolla A, Klenk HD, Sullivan NJ, Volchkov VE, Fritz EA, Daddario KM, Hensley LE, Jahrling PB, Geisbert TW (2005) Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 11:786–790CrossRefGoogle Scholar
  56. 56.
    Marzi A, Feldmann H (2014) Ebola virus vaccines: an overview of current approaches. Expert Rev Vaccines 13:521–531CrossRefGoogle Scholar
  57. 57.
    Zhu FC, Wurie AH, Hou LH, Liang Q, Li YH, Russell JB, Wu SP, Li JX, Hu YM, Guo Q, Xu WB, Wurie AR, Wang WJ, Zhang Z, Yin WJ, Ghazzawi M, Zhang X, Duan L, Wang JZ, Chen W (2017) Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 389:621–628CrossRefGoogle Scholar
  58. 58.
    Venkatraman N, Ndiaye BP, Bowyer G, Wade D, Sridhar S, Wright D, Powlson J, Ndiaye I, Dieye S, Thompson C, Bakhoum M, Morter R, Capone S, Sorbo MD, Jamieson S, Rampling T, Datoo M, Roberts R, Poulton I, Griffiths O, Ballou WR, Roman F, Lewis DJM, Lawrie A, Imoukhuede E, Gilbert SC, Dieye TN, Ewer KJ, Mboup S, Hill AVS (2018) Safety and immunogenicity of a heterologous prime-boost Ebola virus vaccine regimen-ChAd3-EBO-Z followed by MVA-EBO-Z in healthy adults in the UK and Senegal. J Infect Dis. Google Scholar
  59. 59.
    Lazaro-Frias A, Gomez-Medina S, Sanchez-Sampedro L, Ljungberg K, Ustav M, Liljestrom P, Munoz-Fontela C, Esteban M, Garcia-Arriaza J (2018) Distinct immunogenicity and efficacy of poxvirus-based vaccine candidates against Ebola Virus expressing GP and VP40 proteins. J Virol 92:e00363–e00318CrossRefGoogle Scholar
  60. 60.
    Tsuda Y, Caposio P, Parkins CJ, Botto S, Messaoudi I, Cicin-Sain L, Feldmann H, Jarvis MA (2011) A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus. PLoS Negl Trop Dis 5:e1275CrossRefGoogle Scholar
  61. 61.
    Leroy EM, Rouquet P, Formenty P, Souquiere S, Kilbourne A, Froment JM, Bermejo M, Smit S, Karesh W, Swanepoel R, Zaki SR, Rollin PE (2004) Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 303:387–390CrossRefGoogle Scholar
  62. 62.
    Tsuda Y, Parkins CJ, Caposio P, Feldmann F, Botto S, Ball S, Messaoudi I, Cicin-Sain L, Feldmann H, Jarvis MA (2015) A cytomegalovirus-based vaccine provides long-lasting protection against lethal Ebola virus challenge after a single dose. Vaccine 33:2261–2266CrossRefGoogle Scholar
  63. 63.
    Marzi A, Murphy AA, Feldmann F, Parkins CJ, Haddock E, Hanley PW, Emery MJ, Engelmann F, Messaoudi I, Feldmann H, Jarvis MA (2016) Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection. Sci Rep 6:21674CrossRefGoogle Scholar
  64. 64.
    Tierney R, Nakai T, Parkins CJ, Caposio P, Fairweather NF, Sesardic D, Jarvis MA (2012) A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice. Vaccine 30:3047–3052CrossRefGoogle Scholar
  65. 65.
    Kashangura R, Sena ES, Young T, Garner P (2015) Effects of MVA85A vaccine on tuberculosis challenge in animals: systematic review. Int J Epidemiol 44:1970–1981CrossRefGoogle Scholar
  66. 66.
    Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, Mahomed H, McShane H (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381:1021–1028CrossRefGoogle Scholar
  67. 67.
    Forbes EK, Sander C, Ronan EO, McShane H, Hill AV, Beverley PC, Tchilian EZ (2008) Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J Immunol 181:4955–4964CrossRefGoogle Scholar
  68. 68.
    Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN (2009) Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One 4:e5856CrossRefGoogle Scholar
  69. 69.
    Dean G, Whelan A, Clifford D, Salguero FJ, Xing Z, Gilbert S, McShane H, Hewinson RG, Vordermeier M, Villarreal-Ramos B (2014) Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines. Vaccine 32:1304–1310CrossRefGoogle Scholar
  70. 70.
    Jeyanathan M, Shao Z, Yu X, Harkness R, Jiang R, Li J, Xing Z, Zhu T (2015) AdHu5Ag85A respiratory mucosal boost immunization enhances protection against pulmonary tuberculosis in BCG-primed non-human primates. PLoS One 10:e0135009CrossRefGoogle Scholar
  71. 71.
    Beverley PC, Ruzsics Z, Hey A, Hutchings C, Boos S, Bolinger B, Marchi E, O’Hara G, Klenerman P, Koszinowski UH, Tchilian EZ (2014) A novel murine cytomegalovirus vaccine vector protects against Mycobacterium tuberculosis. J Immunol 193:2306–2316CrossRefGoogle Scholar
  72. 72.
    Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE, Malouli D, Gilbride RM, Hughes CM, Ventura AB, Ainslie E, Randall KT, Selseth AN, Rundstrom P, Herlache L, Lewis MS, Park H, Planer SL, Turner JM, Fischer M, Armstrong C, Zweig RC, Valvo J, Braun JM, Shankar S, Lu L, Sylwester AW, Legasse AW, Messerle M, Jarvis MA, Amon LM, Aderem A, Alter G, Laddy DJ, Stone M, Bonavia A, Evans TG, Axthelm MK, Fruh K, Edlefsen PT, Picker LJ (2018) Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med 24:130–143CrossRefGoogle Scholar
  73. 73.
    Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102CrossRefGoogle Scholar
  74. 74.
    Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39:49–60CrossRefGoogle Scholar
  75. 75.
    Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68CrossRefGoogle Scholar
  76. 76.
    June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359:1361–1365CrossRefGoogle Scholar
  77. 77.
    Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P (2013) Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun 13:15Google Scholar
  78. 78.
    Klyushnenkova EN, Kouiavskaia DV, Parkins CJ, Caposio P, Botto S, Alexander RB, Jarvis MA (2012) A cytomegalovirus-based vaccine expressing a single tumor-specific CD8 + T-cell epitope delays tumor growth in a murine model of prostate cancer. J Immunother 35:390–399CrossRefGoogle Scholar
  79. 79.
    Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–55Google Scholar
  80. 80.
    Lee SH, Zafer A, de Repentigny Y, Kothary R, Tremblay ML, Gros P, Duplay P, Webb JR, Vidal SM (2003) Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J Exp Med 197:515–526CrossRefGoogle Scholar
  81. 81.
    Xu G, Smith T, Grey F, Hill AB (2013) Cytomegalovirus-based cancer vaccines expressing TRP2 induce rejection of melanoma in mice. Biochem Biophys Res Commun 437:287–291CrossRefGoogle Scholar
  82. 82.
    Qiu Z, Huang H, Grenier JM, Perez OA, Smilowitz HM, Adler B, Khanna KM (2015) Cytomegalovirus-based vaccine expressing a modified tumor antigen induces potent tumor-specific CD8(+) T-cell response and protects mice from melanoma. Cancer Immunol Res 3:536–546CrossRefGoogle Scholar
  83. 83.
    Grenier JM, Yeung ST, Qiu Z, Jellison ER, Khanna KM (2017) Combining adoptive cell therapy with cytomegalovirus-based vaccine is protective against solid skin tumors. Front Immunol 8:1993CrossRefGoogle Scholar
  84. 84.
    Erkes DA, Xu G, Daskalakis C, Zurbach KA, Wilski NA, Moghbeli T, Hill AB, Snyder CM (2016) Intratumoral infection with murine cytomegalovirus synergizes with PD-L1 blockade to clear melanoma lesions and induce long-term immunity. Mol Ther 24:1444–1455CrossRefGoogle Scholar
  85. 85.
    Erkes DA, Wilski NA, Snyder CM (2017) Intratumoral infection by CMV may change the tumor environment by directly interacting with tumor-associated macrophages to promote cancer immunity. Hum Vaccin Immunother 13:1778–1785CrossRefGoogle Scholar
  86. 86.
    Dekhtiarenko I, Ratts RB, Blatnik R, Lee LN, Fischer S, Borkner L, Oduro JD, Marandu TF, Hoppe S, Ruzsics Z, Sonnemann JK, Mansouri M, Meyer C, Lemmermann NA, Holtappels R, Arens R, Klenerman P, Fruh K, Reddehase MJ, Riemer AB, Cicin-Sain L (2016) Peptide processing is critical for T-cell memory inflation and may be optimized to improve immune protection by CMV-based vaccine vectors. PLoS Pathog 12:e1006072CrossRefGoogle Scholar
  87. 87.
    Beyranvand Nejad E, Ratts RB, Panagioti E, Meyer C, Oduro JD, Cicin-Sain L, Fruh K, van der Burg SH, Arens R (2019) Demarcated thresholds of tumor-specific CD8 T cells elicited by MCMV-based vaccine vectors provide robust correlates of protection. J Immunother Cancer 7:25CrossRefGoogle Scholar
  88. 88.
    Oduro JD, Redeker A, Lemmermann NA, Ebermann L, Marandu TF, Dekhtiarenko I, Holzki JK, Busch DH, Arens R, Cicin-Sain L (2016) Murine cytomegalovirus (CMV) infection via the intranasal route offers a robust model of immunity upon mucosal CMV infection. J Gen Virol 97:185–195CrossRefGoogle Scholar
  89. 89.
    Redeker A, Welten SP, Arens R (2014) Viral inoculum dose impacts memory T-cell inflation. Eur J Immunol 44:1046–1057CrossRefGoogle Scholar
  90. 90.
    Dekhtiarenko I, Jarvis MA, Ruzsics Z, Cicin-Sain L (2013) The context of gene expression defines the immunodominance hierarchy of cytomegalovirus antigens. J Immunol 190:3399–3409CrossRefGoogle Scholar
  91. 91.
    Del Val M, Schlicht HJ, Ruppert T, Reddehase MJ, Koszinowski UH (1991) Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 66:1145–1153CrossRefGoogle Scholar
  92. 92.
    Borkner L, Sitnik KM, Dekhtiarenko I, Pulm AK, Tao R, Drexler I, Cicin-Sain L (2017) Immune protection by a cytomegalovirus vaccine vector expressing a single low-avidity epitope. J Immunol 199:1737–1747CrossRefGoogle Scholar
  93. 93.
    Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK (2012) Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur J Immunol 42:3174–3179CrossRefGoogle Scholar
  94. 94.
    Ebert S, Lemmermann NA, Thomas D, Renzaho A, Reddehase MJ, Holtappels R (2012) Immune control in the absence of immunodominant epitopes: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 201:541–550CrossRefGoogle Scholar
  95. 95.
    Mueller SN, Mackay LK (2016) Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 16:79–89CrossRefGoogle Scholar
  96. 96.
    Morabito KM, Ruckwardt TR, Redwood AJ, Moin SM, Price DA, Graham BS (2017) Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung. Mucosal Immunol 10:545–554CrossRefGoogle Scholar
  97. 97.
    Smith CJ, Caldeira-Dantas S, Turula H, Snyder CM (2015) Murine CMV infection induces the continuous production of mucosal resident T cells. Cell Rep 13:1137–1148CrossRefGoogle Scholar
  98. 98.
    Baumann NS, Torti N, Welten SPM, Barnstorf I, Borsa M, Pallmer K, Oduro JD, Cicin-Sain L, Ikuta K, Ludewig B, Oxenius A (2018) Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. PLoS Pathog 14:e1006993CrossRefGoogle Scholar
  99. 99.
    Ostermann E, Pawletko K, Indenbirken D, Schumacher U, Brune W (2015) Stepwise adaptation of murine cytomegalovirus to cells of a foreign host for identification of host range determinants. Med Microbiol Immunol 204:461–469CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Biología Molecular Severo Ochoa (CSIC-UAM)MadridSpain

Personalised recommendations