Advertisement

Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies

  • Catharina Majer
  • Jan Moritz Schüssler
  • Renate KönigEmail author
Review

Abstract

SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.

Keywords

SAMHD1 Viral restriction Viral evasion strategies Immune modulation 

Notes

Acknowledgements

We would like to thank Kerstin Schott and Lise Lauterbach-Rivière for critical comments on the manuscript. This study was supported by the Deutsche Forschungsgemeinschaft (DFG; CRC1292 Project TP04 to R.K. and SPP1923 Project KO 4573/1-1 to R.K.) and by Deutsches Zentrum für Infektionsforschung (HZI2016Z10).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Goldstone DC, Ennis-Adeniran V, Hedden JJ et al (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480(7377):379–382.  https://doi.org/10.1038/nature10623 CrossRefPubMedGoogle Scholar
  2. 2.
    Lahouassa H, Daddacha W, Hofmann H et al (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13(3):223–228.  https://doi.org/10.1038/ni.2236 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen S, Bonifati S, Qin Z et al (2018) SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways. Proc Natl Acad Sci USA 115(16):E3798–E3807.  https://doi.org/10.1073/pnas.1801213115 CrossRefPubMedGoogle Scholar
  4. 4.
    Daddacha W, Koyen AE, Bastien AJ et al (2017) SAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination. Cell Rep 20(8):1921–1935.  https://doi.org/10.1016/j.celrep.2017.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Coquel F, Silva M-J, Técher H et al (2018) SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557(7703):57–61.  https://doi.org/10.1038/s41586-018-0050-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Beloglazova N, Flick R, Tchigvintsev A et al (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J Biol Chem 288(12):8101–8110.  https://doi.org/10.1074/jbc.M112.431148 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Goncalves A, Karayel E, Rice GI et al (2012) SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations. Hum Mutat 33(7):1116–1122.  https://doi.org/10.1002/humu.22087 CrossRefPubMedGoogle Scholar
  8. 8.
    Seamon KJ, Sun Z, Shlyakhtenko LS et al (2015) SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 43(13):6486–6499.  https://doi.org/10.1093/nar/gkv633 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tüngler V, Staroske W, Kind B et al (2013) Single-stranded nucleic acids promote SAMHD1 complex formation. J Mol Med 91(6):759–770.  https://doi.org/10.1007/s00109-013-0995-3 CrossRefPubMedGoogle Scholar
  10. 10.
    Rice GI, Bond J, Asipu A et al (2009) Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832.  https://doi.org/10.1038/ng.373 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Crow YJ, Livingston JH (2008) Aicardi-Goutières syndrome: an important Mendelian mimic of congenital infection. Dev Med Child Neurol 50(6):410–416.  https://doi.org/10.1111/j.1469-8749.2008.02062.x CrossRefPubMedGoogle Scholar
  12. 12.
    Rentoft M, Lindell K, Tran P et al (2016) Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance. Proc Natl Acad Sci USA 113(17):4723–4728.  https://doi.org/10.1073/pnas.1519128113 CrossRefPubMedGoogle Scholar
  13. 13.
    Clifford R, Louis T, Robbe P et al (2014) SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123(7):1021–1031.  https://doi.org/10.1182/blood-2013-04-490847 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Powell RD, Holland PJ, Hollis T et al (2011) Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286(51):43596–43600.  https://doi.org/10.1074/jbc.C111.317628 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Franzolin E, Pontarin G, Rampazzo C et al (2013) The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA 110(35):14272–14277.  https://doi.org/10.1073/pnas.1312033110 CrossRefPubMedGoogle Scholar
  16. 16.
    Seamon KJ, Bumpus NN, Stivers JT (2016) Single-stranded nucleic acids bind to the tetramer interface of SAMHD1 and prevent formation of the catalytic homotetramer. Biochemistry 55(44):6087–6099.  https://doi.org/10.1021/acs.biochem.6b00986 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    White TE, Brandariz-Nuñez A, Valle-Casuso JC et al (2013) Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1. Virology 436(1):81–90.  https://doi.org/10.1016/j.virol.2012.10.029 CrossRefPubMedGoogle Scholar
  18. 18.
    Ryoo J, Choi J, Oh C et al (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20(8):936–941.  https://doi.org/10.1038/nm.3626 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Choi J, Ryoo J, Oh C et al (2015) SAMHD1 specifically restricts retroviruses through its RNase activity. Retrovirology 12:46.  https://doi.org/10.1186/s12977-015-0174-4 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Antonucci JM, St Gelais C, Silva S de et al (2016) SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity. Nat Med 22(10):1072–1074.  https://doi.org/10.1038/nm.4163 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Laguette N, Sobhian B, Casartelli N et al (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657.  https://doi.org/10.1038/nature10117 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lenzi GM, Domaoal RA, Kim D-H et al (2014) Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses. Retrovirology 11:111.  https://doi.org/10.1186/s12977-014-0111-y CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Riess M, Fuchs NV, Idica A et al (2017) Interferons induce expression of SAMHD1 in monocytes through down-regulation of miR-181a and miR-30a. J Biol Chem 292(1):264–277.  https://doi.org/10.1074/jbc.M116.752584 CrossRefPubMedGoogle Scholar
  24. 24.
    Yang S, Zhan Y, Zhou Y et al (2016) Interferon regulatory factor 3 is a key regulation factor for inducing the expression of SAMHD1 in antiviral innate immunity. Sci Rep 6:29665.  https://doi.org/10.1038/srep29665 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Silva S de, Hoy H, Hake TS et al (2013) Promoter methylation regulates SAMHD1 gene expression in human CD4+ T cells. J Biol Chem 288(13):9284–9292.  https://doi.org/10.1074/jbc.M112.447201 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cohen D, Adamovich Y, Reuven N et al (2010) Hepatitis B virus activates deoxynucleotide synthesis in nondividing hepatocytes by targeting the R2 gene. Hepatology 51(5):1538–1546.  https://doi.org/10.1002/hep.23519 CrossRefPubMedGoogle Scholar
  27. 27.
    Ricardo-Lax I, Ramanan V, Michailidis E et al (2015) Hepatitis B virus induces RNR-R2 expression via DNA damage response activation. J Hepatol 63(4):789–796.  https://doi.org/10.1016/j.jhep.2015.05.017 CrossRefPubMedGoogle Scholar
  28. 28.
    Cameron JM, McDougall I, Marsden HS et al (1988) Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J Gen Virol 69(Pt 10):2607–2612.  https://doi.org/10.1099/0022-1317-69-10-2607 CrossRefPubMedGoogle Scholar
  29. 29.
    Whitehurst CB, Ning S, Bentz GL et al (2009) The Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J Virol 83(9):4345–4353.  https://doi.org/10.1128/JVI.02195-08 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lembo D, Gribaudo G, Hofer A et al (2000) Expression of an altered ribonucleotide reductase activity associated with the replication of murine cytomegalovirus in quiescent fibroblasts. J Virol 74(24):11557–11565.  https://doi.org/10.1128/JVI.74.24.11557-11565.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gammon DB, Gowrishankar B, Duraffour S et al (2010) Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. PLoS Pathog 6(7):e1000984.  https://doi.org/10.1371/journal.ppat.1000984 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Buller RM, Smith GL, Cremer K et al (1985) Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317(6040):813–815CrossRefPubMedGoogle Scholar
  33. 33.
    Field HJ, Wildy P (1978) The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg 81(02):267.  https://doi.org/10.1017/S0022172400025109 CrossRefPubMedGoogle Scholar
  34. 34.
    Cribier A, Descours B, Valadão ALC et al (2013) Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep 3(4):1036–1043.  https://doi.org/10.1016/j.celrep.2013.03.017 CrossRefPubMedGoogle Scholar
  35. 35.
    White TE, Brandariz-Nuñez A, Valle-Casuso JC et al (2013) The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 13(4):441–451.  https://doi.org/10.1016/j.chom.2013.03.005 CrossRefPubMedGoogle Scholar
  36. 36.
    Welbourn S, Dutta SM, Semmes OJ et al (2013) Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 87(21):11516–11524.  https://doi.org/10.1128/JVI.01642-13 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sommer AFR, Rivière L, Qu B et al (2016) Restrictive influence of SAMHD1 on Hepatitis B Virus life cycle. Sci Rep 6:26616.  https://doi.org/10.1038/srep26616 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hu J, Qiao M, Chen Y et al (2018) Cyclin E2-CDK2 mediates SAMHD1 phosphorylation to abrogate its restriction of HBV replication in hepatoma cells. FEBS Lett 592(11):1893–1904.  https://doi.org/10.1002/1873-3468.13105 CrossRefPubMedGoogle Scholar
  39. 39.
    Schott K, Fuchs NV, Derua R et al (2018) Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzymes during mitotic exit. Nat Commun 9(1):2227.  https://doi.org/10.1038/s41467-018-04671-1 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang K, Lv DW, Li R (2018) Conserved herpesvirus protein kinases target SAMHD1 to facilitate virus replication. Cell Rep.  https://doi.org/10.2139/ssrn.3255560 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hansen EC, Seamon KJ, Cravens SL et al (2014) GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state. Proc Natl Acad Sci USA 111(18):E1843–E1851.  https://doi.org/10.1073/pnas.1401706111 CrossRefPubMedGoogle Scholar
  42. 42.
    Mauney CH, Rogers LC, Harris RS et al (2017) The SAMHD1 dNTP triphosphohydrolase is controlled by a redox switch. Antioxid Redox Signal 27(16):1317–1331.  https://doi.org/10.1089/ars.2016.6888 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang Z, Bhattacharya A, White T et al (2018) Functionality of redox-active cysteines is required for restriction of retroviral replication by SAMHD1. Cell Rep 24(4):815–823.  https://doi.org/10.1016/j.celrep.2018.06.090 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kyei GB, Cheng X, Ramani R et al (2015) Cyclin L2 is a critical HIV dependency factor in macrophages that controls SAMHD1 abundance. Cell Host Microbe 17(1):98–106.  https://doi.org/10.1016/j.chom.2014.11.009 CrossRefPubMedGoogle Scholar
  45. 45.
    Ji X, Tang C, Zhao Q et al (2014) Structural basis of cellular dNTP regulation by SAMHD1. Proc Natl Acad Sci USA 111(41):E4305–E4314.  https://doi.org/10.1073/pnas.1412289111 CrossRefPubMedGoogle Scholar
  46. 46.
    Yan J, Kaur S, DeLucia M et al (2013) Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 288(15):10406–10417.  https://doi.org/10.1074/jbc.M112.443796 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Amie SM, Bambara RA, Kim B (2013) GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J Biol Chem 288(35):25001–25006.  https://doi.org/10.1074/jbc.C113.493619 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kennedy EM, Gavegnano C, Nguyen L et al (2010) Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. J Biol Chem 285(50):39380–39391.  https://doi.org/10.1074/jbc.M110.178582 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Baldauf H-M, Pan X, Erikson E et al (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18(11):1682–1687.  https://doi.org/10.1038/nm.2964 CrossRefPubMedGoogle Scholar
  50. 50.
    Welbourn S, Strebel K (2016) Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1. Virology 488:271–277.  https://doi.org/10.1016/j.virol.2015.11.022 CrossRefPubMedGoogle Scholar
  51. 51.
    Koç A, Wheeler LJ, Mathews CK et al (2004) Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 279(1):223–230.  https://doi.org/10.1074/jbc.M303952200 CrossRefPubMedGoogle Scholar
  52. 52.
    Arnold LH, Groom HCT, Kunzelmann S et al (2015) Phospho-dependent regulation of SAMHD1 oligomerisation couples catalysis and restriction. PLoS Pathog 11(10):e1005194.  https://doi.org/10.1371/journal.ppat.1005194 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bhattacharya A, Wang Z, White T et al (2016) Effects of T592 phosphomimetic mutations on tetramer stability and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect. Sci Rep 6:31353.  https://doi.org/10.1038/srep31353 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yan J, Hao C, DeLucia M et al (2015) CyclinA2-cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain. J Biol Chem 290(21):13279–13292.  https://doi.org/10.1074/jbc.M115.646588 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kretschmer S, Wolf C, König N et al (2015) SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis 74(3):e17.  https://doi.org/10.1136/annrheumdis-2013-204845 CrossRefPubMedGoogle Scholar
  56. 56.
    Rice GI, Meyzer C, Bouazza N et al (2018) Reverse-transcriptase inhibitors in the Aicardi–Goutières syndrome. N Engl J Med 379(23):2275–2277.  https://doi.org/10.1056/NEJMc1810983 CrossRefPubMedGoogle Scholar
  57. 57.
    Mathews CK (2015) Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat Rev Cancer 15(9):528–539.  https://doi.org/10.1038/nrc3981 CrossRefPubMedGoogle Scholar
  58. 58.
    Ganai RA, Johansson E (2016) DNA replication—a matter of fidelity. Mol Cell 62(5):745–755.  https://doi.org/10.1016/j.molcel.2016.05.003 CrossRefPubMedGoogle Scholar
  59. 59.
    Mathews CK (2006) DNA precursor metabolism and genomic stability. FASEB J 20(9):1300–1314.  https://doi.org/10.1096/fj.06-5730rev CrossRefPubMedGoogle Scholar
  60. 60.
    Takahashi A, Loo TM, Okada R et al (2018) Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun 9(1):1249.  https://doi.org/10.1038/s41467-018-03555-8 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gluck S, Guey B, Gulen MF et al (2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19(9):1061–1070.  https://doi.org/10.1038/ncb3586 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Yang H, Wang H, Ren J et al (2017) cGAS is essential for cellular senescence. Proc Natl Acad Sci USA 114(23):E4612–E4620.  https://doi.org/10.1073/pnas.1705499114 CrossRefPubMedGoogle Scholar
  63. 63.
    Maelfait J, Bridgeman A, Benlahrech A et al (2016) Restriction by SAMHD1 limits cGAS/STING-dependent innate and adaptive immune responses to HIV-1. Cell Rep 16(6):1492–1501.  https://doi.org/10.1016/j.celrep.2016.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cotta-Ramusino C, Fachinetti D, Lucca C et al (2005) Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol Cell 17(1):153–159.  https://doi.org/10.1016/j.molcel.2004.11.032 CrossRefPubMedGoogle Scholar
  65. 65.
    Quinet A, Lemaçon D, Vindigni A (2017) Replication fork reversal: players and guardians. Mol Cell 68(5):830–833.  https://doi.org/10.1016/j.molcel.2017.11.022 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Patel DR, Weiss RS (2018) A tough row to hoe: when replication forks encounter DNA damage. Biochem Soc Trans 46(6):1643–1651.  https://doi.org/10.1042/BST20180308 CrossRefPubMedGoogle Scholar
  67. 67.
    Ranjha L, Howard SM, Cejka P (2018) Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 127(2):187–214.  https://doi.org/10.1007/s00412-017-0658-1 CrossRefPubMedGoogle Scholar
  68. 68.
    Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271.  https://doi.org/10.1146/annurev-genet-110410-132435 CrossRefPubMedGoogle Scholar
  69. 69.
    Liu T, Huang J (2016) DNA end resection: facts and mechanisms. Genom Proteom Bioinform 14(3):126–130.  https://doi.org/10.1016/j.gpb.2016.05.002 CrossRefGoogle Scholar
  70. 70.
    Bhattacharya S, Srinivasan K, Abdisalaam S et al (2017) RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res 45(8):4590–4605.  https://doi.org/10.1093/nar/gkx126 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Wolf C, Rapp A, Berndt N et al (2016) RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nat Commun 7:11752.  https://doi.org/10.1038/ncomms11752 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hartlova A, Erttmann SF, Am Raffi F et al (2015) DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42(2):332–343.  https://doi.org/10.1016/j.immuni.2015.01.012 CrossRefPubMedGoogle Scholar
  73. 73.
    Li T, Chen ZJ (2018) The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 215(5):1287–1299.  https://doi.org/10.1084/jem.20180139 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Descours B, Cribier A, Chable-Bessia C et al (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9:87.  https://doi.org/10.1186/1742-4690-9-87 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Schott K, Riess M, König R (2017) Role of innate genes in HIV replication. Curr Top Microbiol Immunol.  https://doi.org/10.1007/82_2017_29 CrossRefGoogle Scholar
  76. 76.
    Sáez-Cirión A, Manel N (2018) Immune responses to retroviruses. Annu Rev Immunol 36:193–220.  https://doi.org/10.1146/annurev-immunol-051116-052155 CrossRefPubMedGoogle Scholar
  77. 77.
    Honeycutt JB, Wahl A, Baker C et al (2016) Macrophages sustain HIV replication in vivo independently of T cells. J Clin Invest 126(4):1353–1366.  https://doi.org/10.1172/JCI84456 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Honeycutt JB, Thayer WO, Baker CE et al (2017) HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy. Nat Med 23(5):638–643.  https://doi.org/10.1038/nm.4319 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Rodrigues V, Ruffin N, San-Roman M et al (2017) Myeloid cell interaction with HIV: a complex relationship. Front Immunol 8:1698.  https://doi.org/10.3389/fimmu.2017.01698 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bloch N, O’Brien M, Norton TD et al (2014) HIV type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high levels of SAMHD1 and cannot be counteracted by Vpx. AIDS Res Hum Retrovirus 30(2):195–203.  https://doi.org/10.1089/AID.2013.0119 CrossRefGoogle Scholar
  81. 81.
    Berger A, Sommer AFR, Zwarg J et al (2011) SAMHD1-deficient CD14 + cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 7(12):e1002425.  https://doi.org/10.1371/journal.ppat.1002425 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hrecka K, Hao C, Gierszewska M et al (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474(7353):658–661.  https://doi.org/10.1038/nature10195 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Goujon C, Riviere L, Jarrosson-Wuilleme L et al (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4:2.  https://doi.org/10.1186/1742-4690-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Srivastava S, Swanson SK, Manel N et al (2008) Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate Adaptor for Cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog.  https://doi.org/10.1371/journal.ppat.1000059 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Krupovic M, Blomberg J, Coffin JM et al (2018) Ortervirales: new virus order unifying five families of reverse-transcribing viruses. J Virol.  https://doi.org/10.1128/JVI.00515-18 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gao WY, Cara A, Gallo RC et al (1993) Low levels of deoxynucleotides in peripheral blood lymphocytes: A strategy to inhibit human immunodeficiency virus type 1 replication. Proc Natl Acad Sci USA 90(19):8925–8928CrossRefPubMedGoogle Scholar
  87. 87.
    Korin YD, Zack JA (1999) Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 73(8):6526–6532PubMedPubMedCentralGoogle Scholar
  88. 88.
    Plesa G, Dai J, Baytop C et al (2007) Addition of deoxynucleosides enhances human immunodeficiency virus type 1 integration and 2LTR formation in resting CD4+ T cells. J Virol 81(24):13938–13942.  https://doi.org/10.1128/JVI.01745-07 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Kim B, Nguyen LA, Daddacha W et al (2012) Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J Biol Chem 287(26):21570–21574.  https://doi.org/10.1074/jbc.C112.374843 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ruiz A, Pauls E, Badia R et al (2015) Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages. Cell Cycle 14(11):1657–1665.  https://doi.org/10.1080/15384101.2015.1030558 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Mlcochova P, Sutherland KA, Watters SA et al (2017) A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages. EMBO J 36(5):604–616.  https://doi.org/10.15252/embj.201696025 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Lee EJ, Seo JH, Park J-H et al (2017) SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation. Oncotarget 8(40):68517–68529.  https://doi.org/10.18632/oncotarget.19704 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Lamoliatte F, Caron D, Durette C et al (2014) Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nat Commun 5:5409.  https://doi.org/10.1038/ncomms6409 CrossRefPubMedGoogle Scholar
  94. 94.
    Hendriks IA, Lyon D, Young C et al (2017) Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol 24(3):325–336.  https://doi.org/10.1038/nsmb.3366 CrossRefPubMedGoogle Scholar
  95. 95.
    Lumpkin RJ, Gu H, Zhu Y et al (2017) Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nat Commun 8(1):1171.  https://doi.org/10.1038/s41467-017-01271-3 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Elia AEH, Boardman AP, Wang DC et al (2015) Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell 59(5):867–881.  https://doi.org/10.1016/j.molcel.2015.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Hofmann H, Norton TD, Schultz ML et al (2013) Inhibition of CUL4A Neddylation causes a reversible block to SAMHD1-mediated restriction of HIV-1. J Virol 87(21):11741–11750.  https://doi.org/10.1128/JVI.02002-13 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Campbell EM, Hope TJ (2015) HIV-1 capsid: The multifaceted key player in HIV-1 infection. Nat Rev Microbiol 13(8):471–483.  https://doi.org/10.1038/nrmicro3503 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Bejarano DA, Puertas MC, Börner K et al (2018) Detailed characterization of early HIV-1 replication dynamics in primary human macrophages. Viruses.  https://doi.org/10.3390/v10110620 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Brandariz-Nuñez A, Valle-Casuso JC, White TE et al (2012) Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 9:49.  https://doi.org/10.1186/1742-4690-9-49 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Le Grice SFJ (2012) Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem 287(49):40850–40857.  https://doi.org/10.1074/jbc.R112.389056 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hughes SH (2015) Reverse transcription of retroviruses and LTR retrotransposons. Microbiol Spectr 3(2):MDNA3-0027-2014.  https://doi.org/10.1128/microbiolspec.MDNA3-0027-2014 CrossRefPubMedGoogle Scholar
  103. 103.
    Meng X, Zhao X (2017) Replication fork regression and its regulation. FEMS Yeast Res.  https://doi.org/10.1093/femsyr/fow110 CrossRefPubMedGoogle Scholar
  104. 104.
    Arhel NJ, Souquere-Besse S, Munier S et al (2007) HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 26(12):3025–3037.  https://doi.org/10.1038/sj.emboj.7601740 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Roshal M, Kim B, Zhu Y et al (2003) Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem 278(28):25879–25886.  https://doi.org/10.1074/jbc.M303948200 CrossRefPubMedGoogle Scholar
  106. 106.
    Zimmerman ES, Sherman MP, Blackett JL et al (2006) Human immunodeficiency virus type 1 Vpr induces DNA replication stress in vitro and in vivo. J Virol 80(21):10407–10418.  https://doi.org/10.1128/JVI.01212-06 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Laguette N, Brégnard C, Hue P et al (2014) Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 156(1–2):134–145.  https://doi.org/10.1016/j.cell.2013.12.011 CrossRefPubMedGoogle Scholar
  108. 108.
    Berger G, Lawrence M, Hué S et al (2015) G2/M cell cycle arrest correlates with primate lentiviral Vpr interaction with the SLX4 complex. J Virol 89(1):230–240.  https://doi.org/10.1128/JVI.02307-14 CrossRefPubMedGoogle Scholar
  109. 109.
    Fregoso OI, Emerman M (2016) Activation of the DNA damage response is a conserved function of HIV-1 and HIV-2 Vpr that is independent of SLX4 recruitment. MBio.  https://doi.org/10.1128/mBio.01433-16 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Daniel R, Katz RA, Skalka AM (1999) A role for DNA-PK in retroviral DNA integration. Science 284(5414):644–647CrossRefPubMedGoogle Scholar
  111. 111.
    Li L (2001) Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20(12):3272–3281.  https://doi.org/10.1093/emboj/20.12.3272 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Skalka AM, Katz RA (2005) Retroviral DNA integration and the DNA damage response. Cell Death Differ 12(Suppl 1):971–978.  https://doi.org/10.1038/sj.cdd.4401573 CrossRefPubMedGoogle Scholar
  113. 113.
    Hu WS, Temin HM (1990) Retroviral recombination and reverse transcription. Science 250(4985):1227–1233CrossRefPubMedGoogle Scholar
  114. 114.
    Levy DN, Aldrovandi GM, Kutsch O et al (2004) Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci USA 101(12):4204–4209.  https://doi.org/10.1073/pnas.0306764101 CrossRefPubMedGoogle Scholar
  115. 115.
    Temin HM (1991) Sex and recombination in retroviruses. Trends Genet 7(3):71–74.  https://doi.org/10.1016/0168-9525(91)90272-R CrossRefPubMedGoogle Scholar
  116. 116.
    Rawson JMO, Nikolaitchik OA, Keele BF et al (2018) Recombination is required for efficient HIV-1 replication and the maintenance of viral genome integrity. Nucleic Acids Res 46(20):10535–10545.  https://doi.org/10.1093/nar/gky910 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    König R, Zhou Y, Elleder D et al (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135(1):49–60.  https://doi.org/10.1016/j.cell.2008.07.032 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Kumar D, Abdulovic AL, Viberg J et al (2011) Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res 39(4):1360–1371.  https://doi.org/10.1093/nar/gkq829 CrossRefPubMedGoogle Scholar
  119. 119.
    Watt DL, Buckland RJ, Lujan SA et al (2016) Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools. Nucleic Acids Res 44(4):1669–1680.  https://doi.org/10.1093/nar/gkv1298 CrossRefPubMedGoogle Scholar
  120. 120.
    Chabes A, Georgieva B, Domkin V et al (2003) Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112(3):391–401CrossRefPubMedGoogle Scholar
  121. 121.
    Poli J, Tsaponina O, Crabbé L et al (2012) dNTP pools determine fork progression and origin usage under replication stress. EMBO J 31(4):883–894.  https://doi.org/10.1038/emboj.2011.470 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Buckland RJ, Watt DL, Chittoor B et al (2014) Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand replication infidelity. PLoS Genet 10(12):e1004846.  https://doi.org/10.1371/journal.pgen.1004846 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Bester AC, Roniger M, Oren YS et al (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145(3):435–446.  https://doi.org/10.1016/j.cell.2011.03.044 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Kennedy EM, Amie SM, Bambara RA et al (2012) Frequent incorporation of ribonucleotides during HIV-1 reverse transcription and their attenuated repair in macrophages. J Biol Chem 287(17):14280–14288.  https://doi.org/10.1074/jbc.M112.348482 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Operario DJ, Balakrishnan M, Bambara RA et al (2006) Reduced dNTP interaction of human immunodeficiency virus type 1 reverse transcriptase promotes strand transfer. J Biol Chem 281(43):32113–32121.  https://doi.org/10.1074/jbc.M604665200 CrossRefPubMedGoogle Scholar
  126. 126.
    Laguette N, Rahm N, Sobhian B et al (2012) Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein. Cell Host Microbe 11(2):205–217.  https://doi.org/10.1016/j.chom.2012.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Lim ES, Fregoso OI, McCoy CO et al (2012) The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 11(2):194–204.  https://doi.org/10.1016/j.chom.2012.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Gramberg T, Kahle T, Bloch N et al (2013) Restriction of diverse retroviruses by SAMHD1. Retrovirology 10:26.  https://doi.org/10.1186/1742-4690-10-26 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Mereby SA, Maehigashi T, Holler JM et al (2018) Interplay of ancestral non-primate lentiviruses with the virus-restricting SAMHD1 proteins of their hosts. J Biol Chem 293(42):16402–16412.  https://doi.org/10.1074/jbc.RA118.004567 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Kaushik R, Zhu X, Stranska R et al (2009) A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microbe 6(1):68–80.  https://doi.org/10.1016/j.chom.2009.05.022 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Sze A, Belgnaoui SM, Olagnier D et al (2013) Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 14(4):422–434.  https://doi.org/10.1016/j.chom.2013.09.009 CrossRefPubMedGoogle Scholar
  132. 132.
    Yan H, Li W (2015) Sodium taurocholate cotransporting polypeptide acts as a receptor for hepatitis B and D virus. Dig Dis 33(3):388–396.  https://doi.org/10.1159/000371692 CrossRefPubMedGoogle Scholar
  133. 133.
    Beck J (2007) Hepatitis B virus replication. WJG 13(1):48.  https://doi.org/10.3748/wjg.v13.i1.48 CrossRefPubMedGoogle Scholar
  134. 134.
    Gómez-Moreno A, Garaigorta U (2017) Hepatitis B virus and DNA damage response: interactions and consequences for the infection. Viruses.  https://doi.org/10.3390/v9100304 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Bock CT, Schwinn S, Locarnini S et al (2001) Structural organization of the hepatitis B virus minichromosome. J Mol Biol 307(1):183–196.  https://doi.org/10.1006/jmbi.2000.4481 CrossRefPubMedGoogle Scholar
  136. 136.
    Chen Z, Zhu M, Pan X et al (2014) Inhibition of Hepatitis B virus replication by SAMHD1. Biochem Biophys Res Commun 450(4):1462–1468.  https://doi.org/10.1016/j.bbrc.2014.07.023 CrossRefPubMedGoogle Scholar
  137. 137.
    Jeong GU, Park I-H, Ahn K et al (2016) Inhibition of hepatitis B virus replication by a dNTPase-dependent function of the host restriction factor SAMHD1. Virology 495:71–78.  https://doi.org/10.1016/j.virol.2016.05.001 CrossRefPubMedGoogle Scholar
  138. 138.
    Gearhart TL, Bouchard MJ (2010) The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J Virol 84(6):2675–2686.  https://doi.org/10.1128/JVI.02196-09 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Tuttleman JS, Pourcel C, Summers J (1986) Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47(3):451–460CrossRefPubMedGoogle Scholar
  140. 140.
    Gaillard RK, Barnard J, Lopez V et al (2002) Kinetic analysis of wild-type and YMDD mutant hepatitis B virus polymerases and effects of deoxyribonucleotide concentrations on polymerase activity. Antimicrob Agents Chemother 46(4):1005–1013.  https://doi.org/10.1128/AAC.46.4.1005-1013.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Wang H, Kim S, Ryu W-S (2009) DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J Virol 83(11):5815–5824.  https://doi.org/10.1128/JVI.00011-09 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Baumert TF, Rösler C, Malim MH et al (2007) Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C. Hepatology 46(3):682–689.  https://doi.org/10.1002/hep.21733 CrossRefPubMedGoogle Scholar
  143. 143.
    Wu TT, Coates L, Aldrich CE et al (1990) In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology 175(1):255–261CrossRefPubMedGoogle Scholar
  144. 144.
    Kim ET, White TE, Brandariz-Núñez A et al (2013) SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication. J Virol 87(23):12949–12956.  https://doi.org/10.1128/JVI.02291-13 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Hollenbaugh JA, Gee P, Baker J et al (2013) Host factor SAMHD1 restricts DNA viruses in non-dividing myeloid cells. PLoS Pathog 9(6):e1003481.  https://doi.org/10.1371/journal.ppat.1003481 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Grosche L, Kummer M, Steinkasserer A (2017) What goes around, comes around—HSV-1 replication in monocyte-derived dendritic cells. Front Microbiol 8:2149.  https://doi.org/10.3389/fmicb.2017.02149 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Ellermann-Eriksen S (2005) Macrophages and cytokines in the early defence against herpes simplex virus. Virol J 2:59.  https://doi.org/10.1186/1743-422X-2-59 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Weller SK, Coen DM (2012) Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb Perspect Biol 4(9):a013011.  https://doi.org/10.1101/cshperspect.a013011 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Smith S, Weller SK (2015) HSV-I and the cellular DNA damage response. Future Virol 10(4):383–397.  https://doi.org/10.2217/fvl.15.18 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Fregoso OI, Ahn J, Wang C et al (2013) Evolutionary toggling of Vpx/Vpr specificity results in divergent recognition of the restriction factor SAMHD1. PLoS Pathog 9(7):e1003496.  https://doi.org/10.1371/journal.ppat.1003496 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Sharp PM, Bailes E, Stevenson M et al (1996) Gene acquisition in HIV and SIV. Nature 383(6601):586–587.  https://doi.org/10.1038/383586a0 CrossRefPubMedGoogle Scholar
  152. 152.
    Ahn J, Hao C, Yan J et al (2012) HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1. J Biol Chem 287(15):12550–12558.  https://doi.org/10.1074/jbc.M112.340711 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Schwefel D, Groom HCT, Boucherit VC et al (2014) Structural basis of lentiviral subversion of a cellular protein degradation pathway. Nature 505(7482):234–238.  https://doi.org/10.1038/nature12815 CrossRefPubMedGoogle Scholar
  154. 154.
    Schwefel D, Boucherit VC, Christodoulou E et al (2015) Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx. Cell Host Microbe 17(4):489–499.  https://doi.org/10.1016/j.chom.2015.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Accola MA, Bukovsky AA, Jones MS et al (1999) A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 73(12):9992–9999PubMedPubMedCentralGoogle Scholar
  156. 156.
    Sunseri N, O’Brien M, Bhardwaj N et al (2011) Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 85(13):6263–6274.  https://doi.org/10.1128/JVI.00346-11 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Zhang C, Silva S de, Wang J-H et al (2012) Co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the vpx gene in HIV-1 ancestor. PLoS One 7(5):e37477.  https://doi.org/10.1371/journal.pone.0037477 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Nyamweya S, Hegedus A, Jaye A et al (2013) Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev Med Virol 23(4):221–240.  https://doi.org/10.1002/rmv.1739 CrossRefPubMedGoogle Scholar
  159. 159.
    Jin C, Peng X, Liu F et al (2016) Interferon-induced sterile alpha motif and histidine/aspartic acid domain-containing protein 1 expression in astrocytes and microglia is mediated by microRNA-181a. AIDS 30(13):2053–2064.  https://doi.org/10.1097/QAD.0000000000001166 CrossRefPubMedGoogle Scholar
  160. 160.
    Su B, Biedma ME, Lederle A et al (2014) Dendritic cell-lymphocyte cross talk downregulates host restriction factor SAMHD1 and stimulates HIV-1 replication in dendritic cells. J Virol 88(9):5109–5121.  https://doi.org/10.1128/JVI.03057-13 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Boyer PL, Clark PK, Hughes SH (2012) HIV-1 and HIV-2 reverse transcriptases: different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J Virol 86(10):5885–5894.  https://doi.org/10.1128/JVI.06597-11 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Chayama K, Suzuki Y, Kobayashi M et al (1998) Emergence and takeover of YMDD motif mutant hepatitis B virus during long-term lamivudine therapy and re-takeover by wild type after cessation of therapy. Hepatology 27(6):1711–1716.  https://doi.org/10.1002/hep.510270634 CrossRefPubMedGoogle Scholar
  163. 163.
    Goldstein DJ, Weller SK (1988) Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: Isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 62(1):196–205PubMedPubMedCentralGoogle Scholar
  164. 164.
    Jacobson JG, Leib DA, Goldstein DJ et al (1989) A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173(1):276–283CrossRefPubMedGoogle Scholar
  165. 165.
    Mineta T, Rabkin SD, Yazaki T et al (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943CrossRefPubMedGoogle Scholar
  166. 166.
    Lembo D, Donalisio M, Hofer A et al (2004) The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J Virol 78(8):4278–4288.  https://doi.org/10.1128/JVI.78.8.4278-4288.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Kit S, Qavi H, Dubbs DR et al (1983) Attenuated marmoset herpesvirus isolated from recombinants of virulent marmoset herpesvirus and hybrid plasmids. J Med Virol 12(1):25–36CrossRefPubMedGoogle Scholar
  168. 168.
    Rice AP, Kimata JT (2015) Subversion of cell cycle regulatory mechanisms by HIV. Cell Host Microbe 17(6):736–740.  https://doi.org/10.1016/j.chom.2015.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Jowett JB, Planelles V, Poon B et al (1995) The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 69(10):6304–6313PubMedPubMedCentralGoogle Scholar
  170. 170.
    Romani B, Shaykh Baygloo N, Aghasadeghi MR et al (2015) HIV-1 Vpr protein enhances proteasomal degradation of MCM10 DNA replication factor through the Cul4-DDB1VprBP E3 ubiquitin ligase to induce G2/M cell cycle arrest. J Biol Chem 290(28):17380–17389.  https://doi.org/10.1074/jbc.M115.641522 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    He J, Choe S, Walker R et al (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69(11):6705–6711PubMedPubMedCentralGoogle Scholar
  172. 172.
    Sakai K, Dimas J, Lenardo MJ (2006) The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc Natl Acad Sci USA 103(9):3369–3374.  https://doi.org/10.1073/pnas.0509417103 CrossRefPubMedGoogle Scholar
  173. 173.
    Wang J, Reuschel EL, Shackelford JM et al (2011) HIV-1 Vif promotes the G1- to S-phase cell-cycle transition. Blood 117(4):1260–1269.  https://doi.org/10.1182/blood-2010-06-289215 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Benn J, Schneider RJ (1995) Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proc Natl Acad Sci 92(24):11215–11219.  https://doi.org/10.1073/pnas.92.24.11215 CrossRefPubMedGoogle Scholar
  175. 175.
    Lee YI, Kang-Park S, Do SI (2001) The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 276(20):16969–16977.  https://doi.org/10.1074/jbc.M011263200 CrossRefPubMedGoogle Scholar
  176. 176.
    Bouchard M, Giannakopoulos S, Wang EH et al (2001) Hepatitis B virus HBx protein activation of cyclin A-cyclin-dependent kinase 2 complexes and G1 transit via a Src kinase pathway. J Virol 75(9):4247–4257.  https://doi.org/10.1128/JVI.75.9.4247-4257.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Mukherji A, Janbandhu VC, Kumar V (2007) HBx-dependent cell cycle deregulation involves interaction with cyclin E/A-cdk2 complex and destabilization of p27Kip1. Biochem J 401(1):247–256.  https://doi.org/10.1042/BJ20061091 CrossRefPubMedGoogle Scholar
  178. 178.
    Spector DH (2015) Human cytomegalovirus riding the cell cycle. Med Microbiol Immunol 204(3):409–419.  https://doi.org/10.1007/s00430-015-0396-z CrossRefPubMedGoogle Scholar
  179. 179.
    Kuny CV, Chinchilla K, Culbertson MR et al (2010) Cyclin-dependent kinase-like function is shared by the beta- and gamma-subset of the conserved herpesvirus protein kinases. PLoS Pathog 6(9):e1001092.  https://doi.org/10.1371/journal.ppat.1001092 CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Li R, Liao G, Nirujogi RS et al (2015) Phosphoproteomic profiling reveals Epstein–Barr virus protein kinase integration of DNA damage response and mitotic signaling. PLoS Pathog 11(12):e1005346.  https://doi.org/10.1371/journal.ppat.1005346 CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Posch W, Steger M, Knackmuss U et al (2015) Complement-opsonized HIV-1 overcomes restriction in dendritic cells. PLoS Pathog 11(6):e1005005.  https://doi.org/10.1371/journal.ppat.1005005 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Ayinde D, Bruel T, Cardinaud S et al (2015) SAMHD1 limits HIV-1 antigen presentation by monocyte-derived dendritic cells. J Virol 89(14):6994–7006.  https://doi.org/10.1128/JVI.00069-15 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Etienne L, Hahn BH, Sharp PM et al (2013) Gene loss and adaptation to hominids underlie the ancient origin of HIV-1. Cell Host Microbe 14(1):85–92.  https://doi.org/10.1016/j.chom.2013.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Thientosapol ES, Bosnjak D, Durack T et al (2018) SAMHD1 enhances immunoglobulin hypermutation by promoting transversion mutation. Proc Natl Acad Sci USA 115(19):4921–4926.  https://doi.org/10.1073/pnas.1719771115 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Host-Pathogen InteractionsPaul-Ehrlich-InstituteLangenGermany
  2. 2.Immunity and Pathogenesis ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaUSA
  3. 3.German Center for Infection Research (DZIF)LangenGermany
  4. 4.Host-Pathogen InteractionsPaul-Ehrlich-InstituteLangenGermany

Personalised recommendations