Advertisement

Medical Microbiology and Immunology

, Volume 208, Issue 2, pp 131–169 | Cite as

Genetic variation and function of the HIV-1 Tat protein

  • Cassandra Spector
  • Anthony R. Mele
  • Brian Wigdahl
  • Michael R. NonnemacherEmail author
Review

Abstract

Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses’ representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.

Keywords

HIV-1 Tat Genetic variation Transcription Pathogenesis 

Notes

Funding

The authors were funded in part by the Public Health Service, National Institutes of Health, through grants from the National Institute of Neurological Disorders and Stroke (NINDS) R01 NS089435 (PI, Michael R. Nonnemacher), the NIMH Comprehensive NeuroAIDS Center (CNAC) P30 MH092177 (Kamel Khalili, PI; Brian Wigdahl, PI of the Drexel subcontract involving the Clinical and Translational Research Support Core) and under the Ruth L. Kirschstein National Research Service Award T32 MH079785 (PI, Jay Rappaport; with Brian Wigdahl serving as the PI of the Drexel University College of Medicine component and Olimpia Meucci as Co-Director). The contents of the paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rana TM, Jeang KT (1999) Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys 365(2):175–185.  https://doi.org/10.1006/abbi.1999.1206 Google Scholar
  2. 2.
    Li L, Dahiya S, Kortagere S, Aiamkitsumrit B, Cunningham D, Pirrone V, Nonnemacher MR, Wigdahl B (2012) Impact of Tat genetic variation on HIV-1 disease. Adv Virol 2012:123605.  https://doi.org/10.1155/2012/123605 Google Scholar
  3. 3.
    Gu J, Babayeva ND, Suwa Y, Baranovskiy AG, Price DH, Tahirov TH (2014) Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle 13(11):1788–1797.  https://doi.org/10.4161/cc.28756 Google Scholar
  4. 4.
    Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20(8):2629–2634Google Scholar
  5. 5.
    Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 274(41):28837–28840Google Scholar
  6. 6.
    Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehorn EA, Baumeister K et al (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313(6000):277–284Google Scholar
  7. 7.
    Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K, Chazal N, Arold ST, Pugniere M, Sanchez F, Bonhoure A, Briant L, Loret E, Roy C, Beaumelle B (2010) Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 29(8):1348–1362.  https://doi.org/10.1038/emboj.2010.32 Google Scholar
  8. 8.
    Koken SE, Greijer AE, Verhoef K, van Wamel J, Bukrinskaya AG, Berkhout B (1994) Intracellular analysis of in vitro modified HIV Tat protein. J Biol Chem 269(11):8366–8375Google Scholar
  9. 9.
    Pierleoni R, Menotta M, Antonelli A, Sfara C, Serafini G, Dominici S, Laguardia ME, Salis A, Damonte G, Banci L, Porcu M, Monini P, Ensoli B, Magnani M (2010) Effect of the redox state on HIV-1 tat protein multimerization and cell internalization and trafficking. Mol Cell Biochem 345(1–2):105–118.  https://doi.org/10.1007/s11010-010-0564-9 Google Scholar
  10. 10.
    Ranga U, Shankarappa R, Siddappa NB, Ramakrishna L, Nagendran R, Mahalingam M, Mahadevan A, Jayasuryan N, Satishchandra P, Shankar SK, Prasad VR (2004) Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine. J Virol 78(5):2586–2590Google Scholar
  11. 11.
    Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92(4):451–462Google Scholar
  12. 12.
    Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 95(23):13519–13524Google Scholar
  13. 13.
    Jeang KT, Chun R, Lin NH, Gatignol A, Glabe CG, Fan H (1993) In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol 67(10):6224–6233Google Scholar
  14. 14.
    Hauber J, Malim MH, Cullen BR (1989) Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 63(3):1181–1187Google Scholar
  15. 15.
    Mukerjee R, Sawaya BE, Khalili K, Amini S (2007) Association of p65 and C/EBPbeta with HIV-1 LTR modulates transcription of the viral promoter. J Cell Biochem 100(5):1210–1216.  https://doi.org/10.1002/jcb.21109 Google Scholar
  16. 16.
    Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine WA, Rosen CA (1989) Structural and functional characterization of human immunodeficiency virus tat protein. J Virol 63(1):1–8Google Scholar
  17. 17.
    van der Kuyl AC, Vink M, Zorgdrager F, Bakker M, Wymant C, Hall M, Gall A, Blanquart F, Berkhout B, Fraser C, Cornelissen M, Collaboration B (2018) The evolution of subtype B HIV-1 tat in the Netherlands during 1985–2012. Virus Res 250:51–64.  https://doi.org/10.1016/j.virusres.2018.04.008 Google Scholar
  18. 18.
    Neuveut C, Scoggins RM, Camerini D, Markham RB, Jeang KT (2003) Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J Biomed Sci 10(6 Pt 1):651–660.  https://doi.org/10.1159/000073531 Google Scholar
  19. 19.
    Kukkonen S, Martinez-Viedma Mdel P, Kim N, Manrique M, Aldovini A (2014) HIV-1 Tat second exon limits the extent of Tat-mediated modulation of interferon-stimulated genes in antigen presenting cells. Retrovirology 11:30.  https://doi.org/10.1186/1742-4690-11-30 Google Scholar
  20. 20.
    Lopez-Huertas MR, Mateos E, Sanchez Del Cojo M, Gomez-Esquer F, Diaz-Gil G, Rodriguez-Mora S, Lopez JA, Calvo E, Lopez-Campos G, Alcami J, Coiras M (2013) The presence of HIV-1 Tat protein second exon delays fas protein-mediated apoptosis in CD4 + T lymphocytes: a potential mechanism for persistent viral production. J Biol Chem 288(11):7626–7644.  https://doi.org/10.1074/jbc.M112.408294 Google Scholar
  21. 21.
    Aiamkitsumrit B, Dampier W, Martin-Garcia J, Nonnemacher MR, Pirrone V, Ivanova T, Zhong W, Kilareski E, Aldigun H, Frantz B, Rimbey M, Wojno A, Passic S, Williams JW, Shah S, Blakey B, Parikh N, Jacobson JM, Moldover B, Wigdahl B (2014) Defining differential genetic signatures in CXCR4- and the CCR5-utilizing HIV-1 co-linear sequences. PLoS One 9(9):e107389.  https://doi.org/10.1371/journal.pone.0107389 Google Scholar
  22. 22.
    Chiodelli P, Urbinati C, Mitola S, Tanghetti E, Rusnati M (2012) Sialic acid associated with alphavbeta3 integrin mediates HIV-1 Tat protein interaction and endothelial cell proangiogenic activation. J Biol Chem 287(24):20456–20466.  https://doi.org/10.1074/jbc.M111.337139 Google Scholar
  23. 23.
    Urbinati C, Mitola S, Tanghetti E, Kumar C, Waltenberger J, Ribatti D, Presta M, Rusnati M (2005) Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 25(11):2315–2320.  https://doi.org/10.1161/01.ATV.0000186182.14908.7b Google Scholar
  24. 24.
    Lopez-Huertas MR, Callejas S, Abia D, Mateos E, Dopazo A, Alcami J, Coiras M (2010) Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res 38(10):3287–3307.  https://doi.org/10.1093/nar/gkq037 Google Scholar
  25. 25.
    Canducci F, Marinozzi MC, Sampaolo M, Berre S, Bagnarelli P, Degano M, Gallotta G, Mazzi B, Lemey P, Burioni R, Clementi M (2009) Dynamic features of the selective pressure on the human immunodeficiency virus type 1 (HIV-1) gp120 CD4-binding site in a group of long term non progressor (LTNP) subjects. Retrovirology 6:4.  https://doi.org/10.1186/1742-4690-6-4 Google Scholar
  26. 26.
    Rhee SY, Fessel WJ, Zolopa AR, Hurley L, Liu T, Taylor J, Nguyen DP, Slome S, Klein D, Horberg M, Flamm J, Follansbee S, Schapiro JM, Shafer RW (2005) HIV-1 Protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J Infect Dis 192(3):456–465.  https://doi.org/10.1086/431601 Google Scholar
  27. 27.
    Dampier W, Nonnemacher MR, Mell J, Earl J, Ehrlich GD, Pirrone V, Aiamkitsumrit B, Zhong W, Kercher K, Passic S, Williams JW, Jacobson JM, Wigdahl B (2016) HIV-1 genetic variation resulting in the development of new quasispecies continues to be encountered in the peripheral blood of well-suppressed patients. PLoS One 11(5):e0155382.  https://doi.org/10.1371/journal.pone.0155382 Google Scholar
  28. 28.
    Roy CN, Khandaker I, Oshitani H (2015) Intersubtype genetic variation of HIV-1 Tat Exon 1. AIDS Res Hum Retroviruses 31(6):641–648.  https://doi.org/10.1089/AID.2014.0346 Google Scholar
  29. 29.
    Roy CN, Khandaker I, Oshitani H (2015) Evolutionary dynamics of Tat in HIV-1 subtypes B and C. PLoS One 10(6):e0129896.  https://doi.org/10.1371/journal.pone.0129896 Google Scholar
  30. 30.
    Li L, Aiamkitsumrit B, Pirrone V, Nonnemacher MR, Wojno A, Passic S, Flaig K, Kilareski E, Blakey B, Ku J, Parikh N, Shah R, Martin-Garcia J, Moldover B, Servance L, Downie D, Lewis S, Jacobson JM, Kolson D, Wigdahl B (2011) Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment. J Neurovirol 17(1):92–109.  https://doi.org/10.1007/s13365-010-0014-1 Google Scholar
  31. 31.
    Liu Y, Li J, Kim BO, Pace BS, He JJ (2002) HIV-1 Tat protein-mediated transactivation of the HIV-1 long terminal repeat promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J Biol Chem 277(26):23854–23863.  https://doi.org/10.1074/jbc.M200773200 Google Scholar
  32. 32.
    Rossenkhan R, MacLeod IJ, Sebunya TK, Castro-Nallar E, McLane MF, Musonda R, Gashe BA, Novitsky V, Essex M (2013) tat Exon 1 exhibits functional diversity during HIV-1 subtype C primary infection. J Virol 87(10):5732–5745.  https://doi.org/10.1128/JVI.03297-12 Google Scholar
  33. 33.
    Campbell GR, Loret EP, Spector SA (2010) HIV-1 clade B Tat, but not clade C Tat, increases X4 HIV-1 entry into resting but not activated CD4 + T cells. J Biol Chem 285(3):1681–1691.  https://doi.org/10.1074/jbc.M109.049957 Google Scholar
  34. 34.
    Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63(3):366–376.  https://doi.org/10.1002/ana.21292 Google Scholar
  35. 35.
    Tyor W, Fritz-French C, Nath A (2013) Effect of HIV clade differences on the onset and severity of HIV-associated neurocognitive disorders. J Neurovirol 19(6):515–522.  https://doi.org/10.1007/s13365-013-0206-6 Google Scholar
  36. 36.
    Shah S, Alexaki A, Pirrone V, Dahiya S, Nonnemacher MR, Wigdahl B (2014) Functional properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp site III and CCAAT/enhancer binding protein site I. Virol J 11:92.  https://doi.org/10.1186/1743-422X-11-92 Google Scholar
  37. 37.
    Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B (2009) Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 6:118.  https://doi.org/10.1186/1742-4690-6-118 Google Scholar
  38. 38.
    Burdo TH, Nonnemacher M, Irish BP, Choi CH, Krebs FC, Gartner S, Wigdahl B (2004) High-affinity interaction between HIV-1 Vpr and specific sequences that span the C/EBP and adjacent NF-kappaB sites within the HIV-1 LTR correlate with HIV-1-associated dementia. DNA Cell Biol 23(4):261–269.  https://doi.org/10.1089/104454904773819842 Google Scholar
  39. 39.
    Maubert ME, Pirrone V, Rivera NT, Wigdahl B, Nonnemacher MR (2015) Interaction between Tat and drugs of abuse during HIV-1 infection and central nervous system disease. Front Microbiol 6:1512.  https://doi.org/10.3389/fmicb.2015.01512 Google Scholar
  40. 40.
    Clifford DB (2017) HIV-associated neurocognitive disorder. Curr Opin Infect Dis 30(1):117–122.  https://doi.org/10.1097/QCO.0000000000000328 Google Scholar
  41. 41.
    Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410(6831):988–994.  https://doi.org/10.1038/35073667 Google Scholar
  42. 42.
    Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B (2013) Genetic variation and HIV-associated neurologic disease. Adv Virus Res 87:183–240.  https://doi.org/10.1016/B978-0-12-407698-3.00006-5 Google Scholar
  43. 43.
    Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74(2):255–265.  https://doi.org/10.1002/jnr.10762 Google Scholar
  44. 44.
    Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AE, Alouani S, Wells TN, Mariani G, Rabin RL, Farber JM, Noonan DM (1998) HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 95(22):13153–13158Google Scholar
  45. 45.
    Pu H, Tian J, Flora G, Lee YW, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci 24(1):224–237Google Scholar
  46. 46.
    Agrawal L, Louboutin JP, Reyes BA, Van Bockstaele EJ, Strayer DS (2012) HIV-1 Tat neurotoxicity: a model of acute and chronic exposure, and neuroprotection by gene delivery of antioxidant enzymes. Neurobiol Dis 45(2):657–670.  https://doi.org/10.1016/j.nbd.2011.10.005 Google Scholar
  47. 47.
    Badou A, Bennasser Y, Moreau M, Leclerc C, Benkirane M, Bahraoui E (2000) Tat protein of human immunodeficiency virus type 1 induces interleukin-10 in human peripheral blood monocytes: implication of protein kinase C-dependent pathway. J Virol 74(22):10551–10562Google Scholar
  48. 48.
    Brady J, Kashanchi F (2005) Tat gets the “green” light on transcription initiation. Retrovirology 2:69.  https://doi.org/10.1186/1742-4690-2-69 Google Scholar
  49. 49.
    Cullen BR (1991) Regulation of HIV-1 gene expression. FASEB J 5(10):2361–2368Google Scholar
  50. 50.
    Feinberg MB, Baltimore D, Frankel AD (1991) The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci USA 88(9):4045–4049Google Scholar
  51. 51.
    Purcell DF, Martin MA (1993) Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67(11):6365–6378Google Scholar
  52. 52.
    Truant R, Cullen BR (1999) The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19(2):1210–1217Google Scholar
  53. 53.
    Efthymiadis A, Briggs LJ, Jans DA (1998) The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 273(3):1623–1628Google Scholar
  54. 54.
    Cardarelli F, Serresi M, Bizzarri R, Beltram F (2008) Tuning the transport properties of HIV-1 Tat arginine-rich motif in living cells. Traffic 9(4):528–539.  https://doi.org/10.1111/j.1600-0854.2007.00696.x Google Scholar
  55. 55.
    Smith KM, Himiari Z, Tsimbalyuk S, Forwood JK (2017) Structural Basis for Importin-alpha Binding of the Human Immunodeficiency Virus Tat. Sci Rep 7(1):1650.  https://doi.org/10.1038/s41598-017-01853-7 Google Scholar
  56. 56.
    Bres V, Kiernan R, Emiliani S, Benkirane M (2002) Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J Biol Chem 277(25):22215–22221.  https://doi.org/10.1074/jbc.M201895200 Google Scholar
  57. 57.
    Fulcher AJ, Sivakumaran H, Jin H, Rawle DJ, Harrich D, Jans DA (2016) The protein arginine methyltransferase PRMT6 inhibits HIV-1 Tat nucleolar retention. Biochim Biophys Acta 1863(2):254–262.  https://doi.org/10.1016/j.bbamcr.2015.11.019 Google Scholar
  58. 58.
    Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17(9):3551–3561Google Scholar
  59. 59.
    Orsini MJ, Debouck CM (1996) Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol 70(11):8055–8063Google Scholar
  60. 60.
    He M, Zhang L, Wang X, Huo L, Sun L, Feng C, Jing X, Du D, Liang H, Liu M, Hong Z, Zhou J (2013) Systematic analysis of the functions of lysine acetylation in the regulation of Tat activity. PLoS One 8(6):e67186.  https://doi.org/10.1371/journal.pone.0067186 Google Scholar
  61. 61.
    Ott M, Schnolzer M, Garnica J, Fischle W, Emiliani S, Rackwitz HR, Verdin E (1999) Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol 9(24):1489–1492Google Scholar
  62. 62.
    D’Orso I, Frankel AD (2009) Tat acetylation modulates assembly of a viral-host RNA-protein transcription complex. Proc Natl Acad Sci USA 106(9):3101–3106.  https://doi.org/10.1073/pnas.0900012106 Google Scholar
  63. 63.
    Grisendi S, Mecucci C, Falini B, Pandolfi PP (2006) Nucleophosmin and cancer. Nat Rev Cancer 6(7):493–505.  https://doi.org/10.1038/nrc1885 Google Scholar
  64. 64.
    Li YP (1997) Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71(5):4098–4102Google Scholar
  65. 65.
    Marasco WA, Szilvay AM, Kalland KH, Helland DG, Reyes HM, Walter RJ (1994) Spatial association of HIV-1 tat protein and the nucleolar transport protein B23 in stably transfected Jurkat T-cells. Arch Virol 139(1–2):133–154Google Scholar
  66. 66.
    Gadad SS, Rajan RE, Senapati P, Chatterjee S, Shandilya J, Dash PK, Ranga U, Kundu TK (2011) HIV-1 infection induces acetylation of NPM1 that facilitates Tat localization and enhances viral transactivation. J Mol Biol 410(5):997–1007.  https://doi.org/10.1016/j.jmb.2011.04.009 Google Scholar
  67. 67.
    Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA, Richard S (2005) Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol 79(1):124–131.  https://doi.org/10.1128/JVI.79.1.124-131.2005 Google Scholar
  68. 68.
    Xie B, Invernizzi CF, Richard S, Wainberg MA (2007) Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat interactions with both cyclin T1 and the Tat transactivation region. J Virol 81(8):4226–4234.  https://doi.org/10.1128/JVI.01888-06 Google Scholar
  69. 69.
    Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277(5):3537–3543.  https://doi.org/10.1074/jbc.M108786200 Google Scholar
  70. 70.
    Yoon CH, Kim SY, Byeon SE, Jeong Y, Lee J, Kim KP, Park J, Bae YS (2015) p53-derived host restriction of HIV-1 replication by protein kinase R-mediated Tat phosphorylation and inactivation. J Virol 89(8):4262–4280.  https://doi.org/10.1128/JVI.03087-14 Google Scholar
  71. 71.
    Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1(3):415–431.  https://doi.org/10.1002/wrna.39 Google Scholar
  72. 72.
    Ponti D, Troiano M, Bellenchi GC, Battaglia PA, Gigliani F (2008) The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol 9:32.  https://doi.org/10.1186/1471-2121-9-32 Google Scholar
  73. 73.
    Jarboui MA, Bidoia C, Woods E, Roe B, Wynne K, Elia G, Hall WW, Gautier VW (2012) Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS One 7(11):e48702.  https://doi.org/10.1371/journal.pone.0048702 Google Scholar
  74. 74.
    Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745.  https://doi.org/10.1016/j.cell.2009.01.042 Google Scholar
  75. 75.
    Schneider RJ, Shenk T (1987) Impact of virus infection on host cell protein synthesis. Annu Rev Biochem 56:317–332.  https://doi.org/10.1146/annurev.bi.56.070187.001533 Google Scholar
  76. 76.
    Bushell M, Sarnow P (2002) Hijacking the translation apparatus by RNA viruses. J Cell Biol 158(3):395–399.  https://doi.org/10.1083/jcb.200205044 Google Scholar
  77. 77.
    Debaisieux S, Rayne F, Yezid H, Beaumelle B (2012) The ins and outs of HIV-1 Tat. Traffic 13(3):355–363.  https://doi.org/10.1111/j.1600-0854.2011.01286.x Google Scholar
  78. 78.
    Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15(5):2347–2360.  https://doi.org/10.1091/mbc.E03-12-0921 Google Scholar
  79. 79.
    Yezid H, Konate K, Debaisieux S, Bonhoure A, Beaumelle B (2009) Mechanism for HIV-1 Tat insertion into the endosome membrane. J Biol Chem 284(34):22736–22746.  https://doi.org/10.1074/jbc.M109.023705 Google Scholar
  80. 80.
    Pantano S, Tyagi M, Giacca M, Carloni P (2002) Amino acid modification in the HIV-1 Tat basic domain: insights from molecular dynamics and in vivo functional studies. J Mol Biol 318(5):1331–1339Google Scholar
  81. 81.
    Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276(5):3254–3261.  https://doi.org/10.1074/jbc.M006701200 Google Scholar
  82. 82.
    Mere J, Morlon-Guyot J, Bonhoure A, Chiche L, Beaumelle B (2005) Acid-triggered membrane insertion of Pseudomonas exotoxin A involves an original mechanism based on pH-regulated tryptophan exposure. J Biol Chem 280(22):21194–21201.  https://doi.org/10.1074/jbc.M412656200 Google Scholar
  83. 83.
    De Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6(6):487–492.  https://doi.org/10.1038/ncb0604-487 Google Scholar
  84. 84.
    Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657.  https://doi.org/10.1038/nature05185 Google Scholar
  85. 85.
    Boven LA, Noorbakhsh F, Bouma G, van der Zee R, Vargas DL, Pardo C, McArthur JC, Nottet HS, Power C (2007) Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 13(2):173–184.  https://doi.org/10.1080/13550280701258399 Google Scholar
  86. 86.
    Cowley D, Gray LR, Wesselingh SL, Gorry PR, Churchill MJ (2011) Genetic and functional heterogeneity of CNS-derived tat alleles from patients with HIV-associated dementia. J Neurovirol 17(1):70–81.  https://doi.org/10.1007/s13365-010-0002-5 Google Scholar
  87. 87.
    Roof P, Ricci M, Genin P, Montano MA, Essex M, Wainberg MA, Gatignol A, Hiscott J (2002) Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. Virology 296(1):77–83.  https://doi.org/10.1006/viro.2001.1397 Google Scholar
  88. 88.
    Dahiya S, Nonnemacher MR, Wigdahl B (2012) Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol 93(Pt 6):1151–1172.  https://doi.org/10.1099/vir.0.041186-0 Google Scholar
  89. 89.
    Taylor JP, Pomerantz R, Bagasra O, Chowdhury M, Rappaport J, Khalili K, Amini S (1992) TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation. EMBO J 11(9):3395–3403Google Scholar
  90. 90.
    Hetzer C, Dormeyer W, Schnolzer M, Ott M (2005) Decoding Tat: the biology of HIV Tat posttranslational modifications. Microbes Infect 7(13):1364–1369.  https://doi.org/10.1016/j.micinf.2005.06.003 Google Scholar
  91. 91.
    Deng L, Ammosova T, Pumfery A, Kashanchi F, Nekhai S (2002) HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter. J Biol Chem 277(37):33922–33929.  https://doi.org/10.1074/jbc.M111349200 Google Scholar
  92. 92.
    Ammosova T, Berro R, Jerebtsova M, Jackson A, Charles S, Klase Z, Southerland W, Gordeuk VR, Kashanchi F, Nekhai S (2006) Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology 3:78.  https://doi.org/10.1186/1742-4690-3-78 Google Scholar
  93. 93.
    Ivanov A, Lin X, Ammosova T, Ilatovskiy AV, Kumari N, Lassiter H, Afangbedji N, Niu X, Petukhov MG, Nekhai S (2018) HIV-1 Tat phosphorylation on Ser-16 residue modulates HIV-1 transcription. Retrovirology 15(1):39.  https://doi.org/10.1186/s12977-018-0422-5 Google Scholar
  94. 94.
    Stevenson-Lindert LM, Fowler P, Lew J (2003) Substrate specificity of CDK2-cyclin A. What is optimal? J Biol Chem 278(51):50956–50960.  https://doi.org/10.1074/jbc.M306546200 Google Scholar
  95. 95.
    Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato J, Segawa K, Yoshida E, Nishimura S, Taya Y (1996) The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 15(24):7060–7069Google Scholar
  96. 96.
    Selhorst P, Combrinck C, Ndabambi N, Ismail SD, Abrahams MR, Lacerda M, Samsunder N, Garrett N, Abdool Karim Q, Abdool Karim SS, Williamson C (2017) Replication capacity of viruses from acute infection drives HIV-1 disease progression. J Virol.  https://doi.org/10.1128/JVI.01806-16 Google Scholar
  97. 97.
    Tyagi S, Ochem A, Tyagi M (2011) DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression. J Gen Virol 92(Pt 7):1710–1720.  https://doi.org/10.1099/vir.0.029587-0 Google Scholar
  98. 98.
    McMillan NA, Chun RF, Siderovski DP, Galabru J, Toone WM, Samuel CE, Mak TW, Hovanessian AG, Jeang KT, Williams BR (1995) HIV-1 Tat directly interacts with the interferon-induced, double-stranded RNA-dependent kinase. PKR Virol 213(2):413–424.  https://doi.org/10.1006/viro.1995.0014 Google Scholar
  99. 99.
    Brand SR, Kobayashi R, Mathews MB (1997) The Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase, PKR. J Biol Chem 272(13):8388–8395Google Scholar
  100. 100.
    Garcia MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70(4):1032–1060.  https://doi.org/10.1128/MMBR.00027-06 Google Scholar
  101. 101.
    Krishna KH, Vadlamudi Y, Kumar MS (2016) Viral evolved inhibition mechanism of the RNA Dependent protein kinase PKR’s kinase domain, a structural perspective. PLoS One 11(4):e0153680.  https://doi.org/10.1371/journal.pone.0153680 Google Scholar
  102. 102.
    Campbell GR, Loret EP (2009) What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS Vaccine?. Retrovirology 6:50.  https://doi.org/10.1186/1742-4690-6-50 Google Scholar
  103. 103.
    Endo-Munoz L, Warby T, Harrich D, McMillan NA (2005) Phosphorylation of HIV Tat by PKR increases interaction with TAR RNA and enhances transcription. Virol J 2:17.  https://doi.org/10.1186/1743-422X-2-17 Google Scholar
  104. 104.
    Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee CG, Kashanchi F (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277(2):278–295.  https://doi.org/10.1006/viro.2000.0593 Google Scholar
  105. 105.
    Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18(21):6106–6118.  https://doi.org/10.1093/emboj/18.21.6106 Google Scholar
  106. 106.
    Dorr A, Kiermer V, Pedal A, Rackwitz HR, Henklein P, Schubert U, Zhou MM, Verdin E, Ott M (2002) Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO J 21(11):2715–2723.  https://doi.org/10.1093/emboj/21.11.2715 Google Scholar
  107. 107.
    Bres V, Tagami H, Peloponese JM, Loret E, Jeang KT, Nakatani Y, Emiliani S, Benkirane M, Kiernan RE (2002) Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 21(24):6811–6819Google Scholar
  108. 108.
    Col E, Caron C, Seigneurin-Berny D, Gracia J, Favier A, Khochbin S (2001) The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem 276(30):28179–28184.  https://doi.org/10.1074/jbc.M101385200 Google Scholar
  109. 109.
    Kaehlcke K, Dorr A, Hetzer-Egger C, Kiermer V, Henklein P, Schnoelzer M, Loret E, Cole PA, Verdin E, Ott M (2003) Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol Cell 12(1):167–176Google Scholar
  110. 110.
    Mujtaba S, He Y, Zeng L, Farooq A, Carlson JE, Ott M, Verdin E, Zhou MM (2002) Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 9(3):575–586Google Scholar
  111. 111.
    Agbottah E, Deng L, Dannenberg LO, Pumfery A, Kashanchi F (2006) Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Retrovirology 3:48.  https://doi.org/10.1186/1742-4690-3-48 Google Scholar
  112. 112.
    Tang L, Nogales E, Ciferri C (2010) Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol 102(2–3):122–128.  https://doi.org/10.1016/j.pbiomolbio.2010.05.001 Google Scholar
  113. 113.
    Verdin E, Paras P, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12(8):3249–3259Google Scholar
  114. 114.
    Pagans S, Kauder SE, Kaehlcke K, Sakane N, Schroeder S, Dormeyer W, Trievel RC, Verdin E, Schnolzer M, Ott M (2010) The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 7(3):234–244.  https://doi.org/10.1016/j.chom.2010.02.005 Google Scholar
  115. 115.
    Ali I, Ramage H, Boehm D, Dirk LM, Sakane N, Hanada K, Pagans S, Kaehlcke K, Aull K, Weinberger L, Trievel R, Schnoelzer M, Kamada M, Houtz R, Ott M (2016) The HIV-1 Tat protein is monomethylated at lysine 71 by the lysine methyltransferase KMT7. J Biol Chem 291(31):16240–16248.  https://doi.org/10.1074/jbc.M116.735415 Google Scholar
  116. 116.
    Van Duyne R, Easley R, Wu W, Berro R, Pedati C, Klase Z, Kehn-Hall K, Flynn EK, Symer DE, Kashanchi F (2008) Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 5:40.  https://doi.org/10.1186/1742-4690-5-40 Google Scholar
  117. 117.
    Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio 6(4):e00465.  https://doi.org/10.1128/mBio.00465-15 Google Scholar
  118. 118.
    Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20(4):425–429.  https://doi.org/10.1038/nm.3489 Google Scholar
  119. 119.
    Rasmussen TA, Lewin SR (2016) Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS 11(4):394–401.  https://doi.org/10.1097/COH.0000000000000279 Google Scholar
  120. 120.
    Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W (2008) TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog 4(2):e16.  https://doi.org/10.1371/journal.ppat.0040016 Google Scholar
  121. 121.
    Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B, Konig R, Fackler OT, Keppler OT (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18(11):1682–1687.  https://doi.org/10.1038/nm.2964 Google Scholar
  122. 122.
    Bres V, Kiernan RE, Linares LK, Chable-Bessia C, Plechakova O, Treand C, Emiliani S, Peloponese JM, Jeang KT, Coux O, Scheffner M, Benkirane M (2003) A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat Cell Biol 5(8):754–761.  https://doi.org/10.1038/ncb1023 Google Scholar
  123. 123.
    Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008Google Scholar
  124. 124.
    Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV, Safiran YJ, Oberoi P, Kenten JH, Phillips AC, Weissman AM, Vousden KH (2005) Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7(6):547–559.  https://doi.org/10.1016/j.ccr.2005.04.029 Google Scholar
  125. 125.
    Garber ME, Wei P, KewalRamani VN, Mayall TP, Herrmann CH, Rice AP, Littman DR, Jones KA (1998) The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12(22):3512–3527Google Scholar
  126. 126.
    Faust TB, Li Y, Jang GM, Johnson JR, Yang S, Weiss A, Krogan NJ, Frankel AD (2017) PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription. Sci Rep 7:45394.  https://doi.org/10.1038/srep45394 Google Scholar
  127. 127.
    El Kharroubi A, Piras G, Zensen R, Martin MA (1998) Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol Cell Biol 18(5):2535–2544Google Scholar
  128. 128.
    D’Orso I, Jang GM, Pastuszak AW, Faust TB, Quezada E, Booth DS, Frankel AD (2012) Transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. Mol Cell Biol 32(23):4780–4793.  https://doi.org/10.1128/MCB.00206-12 Google Scholar
  129. 129.
    Garcia JA, Harrich D, Pearson L, Mitsuyasu R, Gaynor RB (1988) Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J 7(10):3143–3147Google Scholar
  130. 130.
    Sadaie MR, Mukhopadhyaya R, Benaissa ZN, Pavlakis GN, Wong-Staal F (1990) Conservative mutations in the putative metal-binding region of human immunodeficiency virus tat disrupt virus replication. AIDS Res Hum Retroviruses 6(11):1257–1263.  https://doi.org/10.1089/aid.1990.6.1257 Google Scholar
  131. 131.
    Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH (2010) Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465(7299):747–751.  https://doi.org/10.1038/nature09131 Google Scholar
  132. 132.
    Rice AP, Carlotti F (1990) Mutational analysis of the conserved cysteine-rich region of the human immunodeficiency virus type 1 Tat protein. J Virol 64(4):1864–1868Google Scholar
  133. 133.
    Reza SM, Rosetti M, Mathews MB, Pe’ery T (2003) Differential activation of Tat variants in mitogen-stimulated cells: implications for HIV-1 postintegration latency. Virology 310(1):141–156Google Scholar
  134. 134.
    Huet T, Dazza MC, Brun-Vezinet F, Roelants GE, Wain-Hobson S (1989) A highly defective HIV-1 strain isolated from a healthy Gabonese individual presenting an atypical western blot. AIDS 3(11):707–715Google Scholar
  135. 135.
    Pantano S, Tyagi M, Giacca M, Carloni P (2004) Molecular dynamics simulations on HIV-1 Tat. Eur Biophys J 33(4):344–351.  https://doi.org/10.1007/s00249-003-0358-z Google Scholar
  136. 136.
    Mele AR, Marino J, Chen K, Pirrone V, Janetopoulos C, Wigdahl B, Klase Z, Nonnemacher MR (2018) Defining the molecular mechanisms of HIV-1 Tat secretion: PtdIns(4,5)P2 at the epicenter. Traffic.  https://doi.org/10.1111/tra.12578 Google Scholar
  137. 137.
    Paul RH, Joska JA, Woods C, Seedat S, Engelbrecht S, Hoare J, Heaps J, Valcour V, Ances B, Baker LM, Salminen LE, Stein DJ (2014) Impact of the HIV Tat C30C31S dicysteine substitution on neuropsychological function in patients with clade C disease. J Neurovirol 20(6):627–635.  https://doi.org/10.1007/s13365-014-0293-z Google Scholar
  138. 138.
    Berkhout B, Gatignol A, Rabson AB, Jeang KT (1990) TAR-independent activation of the HIV-1 LTR: evidence that tat requires specific regions of the promoter. Cell 62(4):757–767Google Scholar
  139. 139.
    Harrich D, Garcia J, Mitsuyasu R, Gaynor R (1990) TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes. EMBO J 9(13):4417–4423Google Scholar
  140. 140.
    Southgate CD, Green MR (1991) The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: implications for Tat function. Genes Dev 5(12B):2496–2507Google Scholar
  141. 141.
    Verhoef K, Koper M, Berkhout B (1997) Determination of the minimal amount of Tat activity required for human immunodeficiency virus type 1 replication. Virology 237(2):228–236.  https://doi.org/10.1006/viro.1997.8786 Google Scholar
  142. 142.
    Das AT, Harwig A, Berkhout B (2011) The HIV-1 Tat protein has a versatile role in activating viral transcription. J Virol 85(18):9506–9516.  https://doi.org/10.1128/JVI.00650-11 Google Scholar
  143. 143.
    Dandekar DH, Ganesh KN, Mitra D (2004) HIV-1 Tat directly binds to NFkappaB enhancer sequence: role in viral and cellular gene expression. Nucleic Acids Res 32(4):1270–1278.  https://doi.org/10.1093/nar/gkh289 Google Scholar
  144. 144.
    Antell GC, Dampier W, Aiamkitsumrit B, Nonnemacher MR, Jacobson JM, Pirrone V, Zhong W, Kercher K, Passic S, Williams JW, Schwartz G, Hershberg U, Krebs FC, Wigdahl B (2016) Utilization of HIV-1 envelope V3 to identify X4- and R5-specific Tat and LTR sequence signatures. Retrovirology 13(1):32.  https://doi.org/10.1186/s12977-016-0266-9 Google Scholar
  145. 145.
    Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611.  https://doi.org/10.1371/journal.pone.0010611 Google Scholar
  146. 146.
    Das AT, Harwig A, Vrolijk MM, Berkhout B (2007) The TAR hairpin of human immunodeficiency virus type 1 can be deleted when not required for Tat-mediated activation of transcription. J Virol 81(14):7742–7748.  https://doi.org/10.1128/JVI.00392-07 Google Scholar
  147. 147.
    Marzio G, Verhoef K, Vink M, Berkhout B (2001) In vitro evolution of a highly replicating, doxycycline-dependent HIV for applications in vaccine studies. Proc Natl Acad Sci USA 98(11):6342–6347.  https://doi.org/10.1073/pnas.111031498 Google Scholar
  148. 148.
    Das AT, Verhoef K, Berkhout B (2004) A conditionally replicating virus as a novel approach toward an HIV vaccine. Methods Enzymol 388:359–379.  https://doi.org/10.1016/S0076-6879(04)88028-5 Google Scholar
  149. 149.
    Mahlknecht U, Dichamp I, Varin A, Van Lint C, Herbein G (2008) NF-kappaB-dependent control of HIV-1 transcription by the second coding exon of Tat in T cells. J Leukoc Biol 83(3):718–727.  https://doi.org/10.1189/jlb.0607405 Google Scholar
  150. 150.
    Yang L, Morris GF, Lockyer JM, Lu M, Wang Z, Morris CB (1997) Distinct transcriptional pathways of TAR-dependent and TAR-independent human immunodeficiency virus type-1 transactivation by Tat. Virology 235(1):48–64.  https://doi.org/10.1006/viro.1997.8672 Google Scholar
  151. 151.
    Taylor JP, Pomerantz RJ, Raj GV, Kashanchi F, Brady JN, Amini S, Khalili K (1994) Central nervous system-derived cells express a kappa B-binding activity that enhances human immunodeficiency virus type 1 transcription in vitro and facilitates TAR-independent transactivation by Tat. J Virol 68(6):3971–3981Google Scholar
  152. 152.
    Gendelman HE, Lipton SA, Tardieu M, Bukrinsky MI, Nottet HS (1994) The neuropathogenesis of HIV-1 infection. J Leukoc Biol 56(3):389–398Google Scholar
  153. 153.
    Zhou L, Saksena NK (2013) HIV Associated Neurocognitive Disorders. Infect Dis Rep 5(Suppl 1):e8.  https://doi.org/10.4081/idr.2013.s1.e8 Google Scholar
  154. 154.
    Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin I, Schiffer V, Calmy A, Chave JP, Giacobini E, Hirschel B, Du Pasquier RA (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24(9):1243–1250.  https://doi.org/10.1097/QAD.0b013e3283354a7b Google Scholar
  155. 155.
    Purvis SF, Jacobberger JW, Sramkoski RM, Patki AH, Lederman MM (1995) HIV type 1 Tat protein induces apoptosis and death in Jurkat cells. AIDS Res Hum Retroviruses 11(4):443–450.  https://doi.org/10.1089/aid.1995.11.443 Google Scholar
  156. 156.
    Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2009) Attenuated neurotoxicity of the transactivation-defective HIV-1 Tat protein in hippocampal cell cultures. Exp Neurol 219(2):586–590.  https://doi.org/10.1016/j.expneurol.2009.07.005 Google Scholar
  157. 157.
    McCloskey TW, Ott M, Tribble E, Khan SA, Teichberg S, Paul MO, Pahwa S, Verdin E, Chirmule N (1997) Dual role of HIV Tat in regulation of apoptosis in T cells. J Immunol 158(2):1014–1019Google Scholar
  158. 158.
    Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154(2):276–288.  https://doi.org/10.1006/exnr.1998.6958 Google Scholar
  159. 159.
    Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB (1995) Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268(5209):429–431Google Scholar
  160. 160.
    Pantaleo G, Fauci AS (1995) Apoptosis in HIV infection. Nat Med 1(2):118–120Google Scholar
  161. 161.
    Sood V, Ranjan R, Banerjea AC (2008) Functional analysis of HIV-1 subtypes B and C HIV-1 Tat exons and RGD/QGD motifs with respect to Tat-mediated transactivation and apoptosis. AIDS 22(13):1683–1685.  https://doi.org/10.1097/QAD.0b013e3282f56114 Google Scholar
  162. 162.
    Chen D, Wang M, Zhou S, Zhou Q (2002) HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J 21(24):6801–6810Google Scholar
  163. 163.
    Peter ME, Ehret A, Berndt C, Krammer PH (1997) AIDS and the death receptors. Br Med Bull 53(3):604–616Google Scholar
  164. 164.
    Herbeuval JP, Grivel JC, Boasso A, Hardy AW, Chougnet C, Dolan MJ, Yagita H, Lifson JD, Shearer GM (2005) CD4 + T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood 106(10):3524–3531.  https://doi.org/10.1182/blood-2005-03-1243 Google Scholar
  165. 165.
    Garden GA, Budd SL, Tsai E, Hanson L, Kaul M, D’Emilia DM, Friedlander RM, Yuan J, Masliah E, Lipton SA (2002) Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci 22(10):4015–4024. (20026351)Google Scholar
  166. 166.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241.  https://doi.org/10.1038/nrm2312 Google Scholar
  167. 167.
    Campbell GR, Watkins JD, Esquieu D, Pasquier E, Loret EP, Spector SA (2005) The C terminus of HIV-1 Tat modulates the extent of CD178-mediated apoptosis of T cells. J Biol Chem 280(46):38376–38382.  https://doi.org/10.1074/jbc.M506630200 Google Scholar
  168. 168.
    Bartz SR, Emerman M (1999) Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 73(3):1956–1963Google Scholar
  169. 169.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516.  https://doi.org/10.1080/01926230701320337 Google Scholar
  170. 170.
    Kamori D, Ueno T (2017) HIV-1 Tat and viral latency: what we can learn from naturally occurring sequence variations. Front Microbiol 8:80.  https://doi.org/10.3389/fmicb.2017.00080 Google Scholar
  171. 171.
    Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, Esquieu D, Barbier P, de Mareuil J, Braguer D, Kaleebu P, Yirrell DL, Loret EP (2004) The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis. J Biol Chem 279(46):48197–48204.  https://doi.org/10.1074/jbc.M406195200 Google Scholar
  172. 172.
    de Mareuil J, Carre M, Barbier P, Campbell GR, Lancelot S, Opi S, Esquieu D, Watkins JD, Prevot C, Braguer D, Peyrot V, Loret EP (2005) HIV-1 Tat protein enhances microtubule polymerization. Retrovirology 2:5.  https://doi.org/10.1186/1742-4690-2-5 Google Scholar
  173. 173.
    Battaglia PA, Zito S, Macchini A, Gigliani F (2001) A Drosophila model of HIV-Tat-related pathogenicity. J Cell Sci 114(Pt 15):2787–2794Google Scholar
  174. 174.
    Alizon M, Wain-Hobson S, Montagnier L, Sonigo P (1986) Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients. Cell 46(1):63–74Google Scholar
  175. 175.
    Egele C, Barbier P, Didier P, Piemont E, Allegro D, Chaloin O, Muller S, Peyrot V, Mely Y (2008) Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat. Retrovirology 5:62.  https://doi.org/10.1186/1742-4690-5-62 Google Scholar
  176. 176.
    Strack PR, Frey MW, Rizzo CJ, Cordova B, George HJ, Meade R, Ho SP, Corman J, Tritch R, Korant BD (1996) Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc Natl Acad Sci USA 93(18):9571–9576Google Scholar
  177. 177.
    Jacotot E, Ferri KF, El Hamel C, Brenner C, Druillennec S, Hoebeke J, Rustin P, Metivier D, Lenoir C, Geuskens M, Vieira HL, Loeffler M, Belzacq AS, Briand JP, Zamzami N, Edelman L, Xie ZH, Reed JC, Roques BP, Kroemer G (2001) Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein rR and Bcl-2. J Exp Med 193(4):509–519Google Scholar
  178. 178.
    Zauli G, Gibellini D (1996) The human immunodeficiency virus type-1 (HIV-1) Tat protein and Bcl-2 gene expression. Leuk Lymphoma 23(5–6):551–560.  https://doi.org/10.3109/10428199609054864 Google Scholar
  179. 179.
    Zauli G, Gibellini D, Caputo A, Bassini A, Negrini M, Monne M, Mazzoni M, Capitani S (1995) The human immunodeficiency virus type-1 Tat protein upregulates Bcl-2 gene expression in Jurkat T-cell lines and primary peripheral blood mononuclear cells. Blood 86(10):3823–3834Google Scholar
  180. 180.
    Sastry KJ, Marin MC, Nehete PN, McConnell K, el-Naggar AK, McDonnell TJ (1996) Expression of human immunodeficiency virus type I tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells. Oncogene 13(3):487–493Google Scholar
  181. 181.
    Zauli G, Gibellini D, Milani D, Mazzoni M, Borgatti P, La Placa M, Capitani S (1993) Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial, and neuronal cell lines from death by apoptosis. Cancer Res 53(19):4481–4485Google Scholar
  182. 182.
    Gibellini D, Caputo A, Celeghini C, Bassini A, La Placa M, Capitani S, Zauli G (1995) Tat-expressing Jurkat cells show an increased resistance to different apoptotic stimuli, including acute human immunodeficiency virus-type 1 (HIV-1) infection. Br J Haematol 89(1):24–33Google Scholar
  183. 183.
    Zhang M, Li X, Pang X, Ding L, Wood O, Clouse KA, Hewlett I, Dayton AI (2002) Bcl-2 upregulation by HIV-1 Tat during infection of primary human macrophages in culture. J Biomed Sci 9(2):133–139.  https://doi.org/10.1159/000048209 Google Scholar
  184. 184.
    Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S (1996) HIV-1-Tat modulates the function of monocytes and alters their interactions with microvessel endothelial cells. A mechanism of HIV pathogenesis. J Immunol 156(4):1638–1645Google Scholar
  185. 185.
    Toborek M, Lee YW, Pu H, Malecki A, Flora G, Garrido R, Hennig B, Bauer HC, Nath A (2003) HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J Neurochem 84(1):169–179Google Scholar
  186. 186.
    Raidel SM, Haase C, Jansen NR, Russ RB, Sutliff RL, Velsor LW, Day BJ, Hoit BD, Samarel AM, Lewis W (2002) Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. Am J Physiol Heart Circ Physiol 282(5):H1672–H1678.  https://doi.org/10.1152/ajpheart.00955.2001 Google Scholar
  187. 187.
    Paladugu R, Fu W, Conklin BS, Lin PH, Lumsden AB, Yao Q, Chen C (2003) Hiv Tat protein causes endothelial dysfunction in porcine coronary arteries. J Vasc Surg 38(3):549–555. (discussion 555–546)Google Scholar
  188. 188.
    Rusnati M, Presta M (2002) HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5(3):141–151Google Scholar
  189. 189.
    Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502.  https://doi.org/10.1101/cshperspect.a006502 Google Scholar
  190. 190.
    Albini A, Soldi R, Giunciuglio D, Giraudo E, Benelli R, Primo L, Noonan D, Salio M, Camussi G, Rockl W, Bussolino F (1996) The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 2(12):1371–1375Google Scholar
  191. 191.
    Albini A, Benelli R, Presta M, Rusnati M, Ziche M, Rubartelli A, Paglialunga G, Bussolino F, Noonan D (1996) HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 12(2):289–297Google Scholar
  192. 192.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676.  https://doi.org/10.1038/nm0603-669 Google Scholar
  193. 193.
    Dhawan S, Puri RK, Kumar A, Duplan H, Masson JM, Aggarwal BB (1997) Human immunodeficiency virus-1-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood 90(4):1535–1544Google Scholar
  194. 194.
    Mitola S, Soldi R, Zanon I, Barra L, Gutierrez MI, Berkhout B, Giacca M, Bussolino F (2000) Identification of specific molecular structures of human immunodeficiency virus type 1 Tat relevant for its biological effects on vascular endothelial cells. J Virol 74(1):344–353Google Scholar
  195. 195.
    Toborek M, Lee YW, Flora G, Pu H, Andras IE, Wylegala E, Hennig B, Nath A (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 25(1):181–199Google Scholar
  196. 196.
    Vene R, Benelli R, Noonan DM, Albini A (2000) HIV-Tat dependent chemotaxis and invasion, key aspects of tat mediated pathogenesis. Clin Exp Metastasis 18(7):533–538Google Scholar
  197. 197.
    Benelli R, Mortarini R, Anichini A, Giunciuglio D, Noonan DM, Montalti S, Tacchetti C, Albini A (1998) Monocyte-derived dendritic cells and monocytes migrate to HIV-Tat RGD and basic peptides. AIDS 12(3):261–268Google Scholar
  198. 198.
    Albini A, Benelli R, Giunciuglio D, Cai T, Mariani G, Ferrini S, Noonan DM (1998) Identification of a novel domain of HIV tat involved in monocyte chemotaxis. J Biol Chem 273(26):15895–15900Google Scholar
  199. 199.
    Premack BA, Schall TJ (1996) Chemokine receptors: gateways to inflammation and infection. Nat Med 2(11):1174–1178Google Scholar
  200. 200.
    Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95(6):3117–3121Google Scholar
  201. 201.
    Bonwetsch R, Croul S, Richardson MW, Lorenzana C, Del Valle L, Sverstiuk AE, Amini S, Morgello S, Khalili K, Rappaport J (1999) Role of HIV-1 Tat and CC chemokine MIP-1alpha in the pathogenesis of HIV associated central nervous system disorders. J Neurovirol 5(6):685–694Google Scholar
  202. 202.
    Weiss JM, Nath A, Major EO, Berman JW (1999) HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol 163(5):2953–2959Google Scholar
  203. 203.
    Geiss GK, Bumgarner RE, An MC, Agy MB, van ‘t Wout AB, Hammersmark E, Carter VS, Upchurch D, Mullins JI, Katze MG (2000) Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology 266(1):8–16.  https://doi.org/10.1006/viro.1999.0044 Google Scholar
  204. 204.
    Fan J, Bass HZ, Fahey JL (1993) Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol 151(9):5031–5040Google Scholar
  205. 205.
    Lafrenie RM, Wahl LM, Epstein JS, Yamada KM, Dhawan S (1997) Activation of monocytes by HIV-Tat treatment is mediated by cytokine expression. J Immunol 159(8):4077–4083Google Scholar
  206. 206.
    Nath A, Conant K, Chen P, Scott C, Major EO (1999) Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 274(24):17098–17102Google Scholar
  207. 207.
    Kiernan R, Bres V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M (2003) Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 278(4):2758–2766.  https://doi.org/10.1074/jbc.M209572200 Google Scholar
  208. 208.
    Lenardo MJ, Baltimore D (1989) NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58(2):227–229Google Scholar
  209. 209.
    Kwon HS, Brent MM, Getachew R, Jayakumar P, Chen LF, Schnolzer M, McBurney MW, Marmorstein R, Greene WC, Ott M (2008) Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe 3(3):158–167.  https://doi.org/10.1016/j.chom.2008.02.002 Google Scholar
  210. 210.
    Bachmann MF, Oxenius A (2007) Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep 8(12):1142–1148.  https://doi.org/10.1038/sj.embor.7401099 Google Scholar
  211. 211.
    Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N, McCloskey T, Pahwa S, Verdin E (1997) Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 275(5305):1481–1485Google Scholar
  212. 212.
    Carvallo L, Lopez L, Fajardo JE, Jaureguiberry-Bravo M, Fiser A, Berman JW (2017) HIV-Tat regulates macrophage gene expression in the context of neuroAIDS. PLoS One 12(6):e0179882.  https://doi.org/10.1371/journal.pone.0179882 Google Scholar
  213. 213.
    Bouwman RD, Palser A, Parry CM, Coulter E, Rasaiyaah J, Kellam P, Jenner RG (2014) Human immunodeficiency virus Tat associates with a specific set of cellular RNAs. Retrovirology 11:53.  https://doi.org/10.1186/1742-4690-11-53 Google Scholar
  214. 214.
    Sharma V, Knobloch TJ, Benjamin D (1995) Differential expression of cytokine genes in HIV-1 tat transfected T and B cell lines. Biochem Biophys Res Commun 208(2):704–713.  https://doi.org/10.1006/bbrc.1995.1395 Google Scholar
  215. 215.
    Dabrowska A, Kim N, Aldovini A (2008) Tat-induced FOXO3a is a key mediator of apoptosis in HIV-1-infected human CD4 + T lymphocytes. J Immunol 181(12):8460–8477Google Scholar
  216. 216.
    Izmailova E, Bertley FM, Huang Q, Makori N, Miller CJ, Young RA, Aldovini A (2003) HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med 9(2):191–197.  https://doi.org/10.1038/nm822 Google Scholar
  217. 217.
    Ranjbar S, Rajsbaum R, Goldfeld AE (2006) Transactivator of transcription from HIV type 1 subtype E selectively inhibits TNF gene expression via interference with chromatin remodeling of the TNF locus. J Immunol 176(7):4182–4190Google Scholar
  218. 218.
    Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3(3):221–227.  https://doi.org/10.1038/ni0302-221 Google Scholar
  219. 219.
    Israel N, Hazan U, Alcami J, Munier A, Arenzana-Seisdedos F, Bachelerie F, Israel A, Virelizier JL (1989) Tumor necrosis factor stimulates transcription of HIV-1 in human T lymphocytes, independently and synergistically with mitogens. J Immunol 143(12):3956–3960Google Scholar
  220. 220.
    Hiscott J, Kwon H, Genin P (2001) Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest 107(2):143–151.  https://doi.org/10.1172/JCI11918 Google Scholar
  221. 221.
    Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70(3):1475–1480Google Scholar
  222. 222.
    Li W, Huang Y, Reid R, Steiner J, Malpica-Llanos T, Darden TA, Shankar SK, Mahadevan A, Satishchandra P, Nath A (2008) NMDA receptor activation by HIV-Tat protein is clade dependent. J Neurosci 28(47):12190–12198.  https://doi.org/10.1523/JNEUROSCI.3019-08.2008 Google Scholar
  223. 223.
    Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13(6):2651–2661Google Scholar
  224. 224.
    Sengpiel B, Preis E, Krieglstein J, Prehn JH (1998) NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur J Neurosci 10(5):1903–1910Google Scholar
  225. 225.
    Bertrand SJ, Aksenova MV, Mactutus CF, Booze RM (2013) HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp Neurol 248:228–235.  https://doi.org/10.1016/j.expneurol.2013.06.020 Google Scholar
  226. 226.
    Zhang W, Benson DL (2001) Stages of synapse development defined by dependence on F-actin. J Neurosci 21(14):5169–5181Google Scholar
  227. 227.
    Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12(2):376–389Google Scholar
  228. 228.
    Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90(17):7951–7955Google Scholar
  229. 229.
    Holscher C (2005) Development of beta-amyloid-induced neurodegeneration in Alzheimer’s disease and novel neuroprotective strategies. Rev Neurosci 16(3):181–212Google Scholar
  230. 230.
    Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19(4):407–411Google Scholar
  231. 231.
    Achim CL, Adame A, Dumaop W, Everall IP, Masliah E, Neurobehavioral Research C (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol 4(2):190–199.  https://doi.org/10.1007/s11481-009-9152-8 Google Scholar
  232. 232.
    Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34(10):2370–2378.  https://doi.org/10.1016/j.neurobiolaging.2013.04.015 Google Scholar
  233. 233.
    Nixon RA, Cataldo AM (1995) The endosomal-lysosomal system of neurons: new roles. Trends Neurosci 18(11):489–496Google Scholar
  234. 234.
    Bahr BA, Bendiske J (2002) The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 83(3):481–489Google Scholar
  235. 235.
    Annaert W, De Strooper B (2002) A cell biological perspective on Alzheimer’s disease. Annu Rev Cell Dev Biol 18:25–51.  https://doi.org/10.1146/annurev.cellbio.18.020402.142302 Google Scholar
  236. 236.
    Kim J, Yoon JH, Kim YS (2013) HIV-1 Tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 8(11):e77972.  https://doi.org/10.1371/journal.pone.0077972 Google Scholar
  237. 237.
    Hategan A, Bianchet MA, Steiner J, Karnaukhova E, Masliah E, Fields A, Lee MH, Dickens AM, Haughey N, Dimitriadis EK, Nath A (2017) HIV Tat protein and amyloid-beta peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol 24(4):379–386.  https://doi.org/10.1038/nsmb.3379 Google Scholar
  238. 238.
    Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2010) HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett 475(3):174–178.  https://doi.org/10.1016/j.neulet.2010.03.073 Google Scholar
  239. 239.
    Johri MK, Sharma N, Singh SK (2015) HIV Tat protein: Is Tat-C much trickier than Tat-B? J Med Virol 87(8):1334–1343.  https://doi.org/10.1002/jmv.24182 Google Scholar
  240. 240.
    Kurosu T, Mukai T, Komoto S, Ibrahim MS, Li YG, Kobayashi T, Tsuji S, Ikuta K (2002) Human immunodeficiency virus type 1 subtype C exhibits higher transactivation activity of Tat than subtypes B and E. Microbiol Immunol 46(11):787–799Google Scholar
  241. 241.
    Gandhi N, Saiyed Z, Thangavel S, Rodriguez J, Rao KV, Nair MP (2009) Differential effects of HIV type 1 clade B and clade C Tat protein on expression of proinflammatory and antiinflammatory cytokines by primary monocytes. AIDS Res Hum Retroviruses 25(7):691–699.  https://doi.org/10.1089/aid.2008.0299 Google Scholar
  242. 242.
    Bayes-Genis A, Barallat J, Richards AM (2016) A test in context: neprilysin: function, inhibition, and biomarker. J Am Coll Cardiol 68(6):639–653.  https://doi.org/10.1016/j.jacc.2016.04.060 Google Scholar
  243. 243.
    Rempel HC, Pulliam L (2005) HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 19(2):127–135Google Scholar
  244. 244.
    Daily A, Nath A, Hersh LB (2006) Tat peptides inhibit neprilysin. J Neurovirol 12(3):153–160.  https://doi.org/10.1080/13550280600760677 Google Scholar
  245. 245.
    Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112(10):5147–5192.  https://doi.org/10.1021/cr3000994 Google Scholar
  246. 246.
    Butterfield DA (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36(12):1307–1313Google Scholar
  247. 247.
    Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120(4):545–555.  https://doi.org/10.1016/j.cell.2005.02.008 Google Scholar
  248. 248.
    Allen TM, Altfeld M, Geer SC, Kalife ET, Moore C, O’Sullivan KM, Desouza I, Feeney ME, Eldridge RL, Maier EL, Kaufmann DE, Lahaie MP, Reyor L, Tanzi G, Johnston MN, Brander C, Draenert R, Rockstroh JK, Jessen H, Rosenberg ES, Mallal SA, Walker BD (2005) Selective escape from CD8 + T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 79(21):13239–13249.  https://doi.org/10.1128/JVI.79.21.13239-13249.2005 Google Scholar
  249. 249.
    Allen TM, O’Connor DH, Jing P, Dzuris JL, Mothe BR, Vogel TU, Dunphy E, Liebl ME, Emerson C, Wilson N, Kunstman KJ, Wang X, Allison DB, Hughes AL, Desrosiers RC, Altman JD, Wolinsky SM, Sette A, Watkins DI (2000) Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407(6802):386–390.  https://doi.org/10.1038/35030124 Google Scholar
  250. 250.
    Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 97(21):11466–11471.  https://doi.org/10.1073/pnas.97.21.11466 Google Scholar
  251. 251.
    Desfosses Y, Solis M, Sun Q, Grandvaux N, Van Lint C, Burny A, Gatignol A, Wainberg MA, Lin R, Hiscott J (2005) Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins. J Virol 79(14):9180–9191.  https://doi.org/10.1128/JVI.79.14.9180-9191.2005 Google Scholar
  252. 252.
    Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stutz AM, Jauch A, Aiyar RS, Pau G, Delhomme N, Gagneur J, Korbel JO, Huber W, Steinmetz LM (2013) The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3(8):1213–1224.  https://doi.org/10.1534/g3.113.005777 Google Scholar
  253. 253.
    Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, Pasquali F, Maserati E (2015) High variability of genomic instability and gene expression profiling in different HeLa clones. Sci Rep 5:15377.  https://doi.org/10.1038/srep15377 Google Scholar
  254. 254.
    Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M, Shi J, Baran P, Fromentin R, Chomont N, Valente ST (2012) An analog of the natural steroidal alkaloid cortistatin A potently suppresses Tat-dependent HIV transcription. Cell Host Microbe 12(1):97–108.  https://doi.org/10.1016/j.chom.2012.05.016 Google Scholar
  255. 255.
    Ferrucci A, Nonnemacher MR, Wigdahl B (2011) Human immunodeficiency virus viral protein R as an extracellular protein in neuropathogenesis. Adv Virus Res 81:165–199.  https://doi.org/10.1016/B978-0-12-385885-6.00010-9 Google Scholar
  256. 256.
    James T, Nonnemacher MR, Wigdahl B, Krebs FC (2016) Defining the roles for Vpr in HIV-1-associated neuropathogenesis. J Neurovirol 22(4):403–415.  https://doi.org/10.1007/s13365-016-0436-5 Google Scholar
  257. 257.
    Dampier W, Antell GC, Aiamkitsumrit B, Nonnemacher MR, Jacobson JM, Pirrone V, Zhong W, Kercher K, Passic S, Williams JW, James T, Devlin KN, Giovannetti T, Libon DJ, Szep Z, Ehrlich GD, Wigdahl B, Krebs FC (2017) Specific amino acids in HIV-1 Vpr are significantly associated with differences in patient neurocognitive status. J Neurovirol 23(1):113–124.  https://doi.org/10.1007/s13365-016-0462-3 Google Scholar
  258. 258.
    Hogan TH, Nonnemacher MR, Krebs FC, Henderson A, Wigdahl B (2003) HIV-1 Vpr binding to HIV-1 LTR C/EBP cis-acting elements and adjacent regions is sequence-specific. Biomed Pharmacother 57(1):41–48Google Scholar
  259. 259.
    Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33.  https://doi.org/10.1177/1756285612461679 Google Scholar
  260. 260.
    Rygiel K (2016) Novel strategies for Alzheimer’s disease treatment: An overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol 48(6):629–636.  https://doi.org/10.4103/0253-7613.194867 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyDrexel University College of MedicinePhiladelphiaUSA
  2. 2.Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaUSA
  3. 3.Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations