Skip to main content
Log in

The monocytosis during human leptospirosis is associated with modest immune cell activation states

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Leptospirosis is a life-threatening zoonotic disease and it has been hypothesized that the innate immune system fails to control the infection through ill-characterized mechanisms. The aim of this observational study was to better evaluate the activation processes of monocytes at the early stage of the disease. Blood samples were taken from healthy donors (n = 37) and patients hospitalized for either non-severe (n = 25) or severe (n = 32) leptospirosis. Monocyte cell counts and phenotypes were assessed by flow cytometry. We analysed the expression of several cell activation markers: CD14, CD16, HLA-DR, CD69, TLR2, TLR4, CD11b and CD11c. Although monocyte values at admittance were not significantly different from controls, patients experienced significant monocytosis at 1.33 × 109/L (p < 0.0001 compared to controls: 0.56 × 109/L) during their hospital stay. This monocytosis observed during hospital stay was correlated to several surrogate markers of organ injury. Non-classical (CD14−CD16+) and intermediate (CD14+CD16+) monocyte subsets increased compared to controls (p < 0.05). Accordingly, classical monocyte subset (CD14+CD16−) showed decreased percentages (p < 0.0001). Levels of several cell surface activation molecules were decreased: HLA-DR involved in MHC class II antigen presentation, integrins CD11b and CD11c implicated in phagocytosis and cell recruitment (p < 0.0001). None of these parameters had a prognostic value. Results from this study showed that during acute human leptospirosis, patients experienced monocytosis with a switch toward an inflammation-related phenotype contrasted by low expression levels of markers implicated in monocyte function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the FlowRepository public database, URL: https://flowrepository.org/id/RvFrfom7jwL1SHc4nTFg2epdGcDpHc3qwtsGSOPoDm6ofWkmfjfQTm22c2UcA1At.

References

  1. Costa F, Hagan JE, Calcagno J et al (2015) Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9:e0003898. https://doi.org/10.1371/journal.pntd.0003898

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bharti AR, Nally JE, Ricaldi JN et al (2003) Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3:757–771

    Article  PubMed  Google Scholar 

  3. Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874. https://doi.org/10.1038/nri3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Werts C (2017) Interaction of Leptospira with the Innate Immune System. Curr Top Microbiol Immunol. https://doi.org/10.1007/82_2017_46

    Article  Google Scholar 

  5. Toma C, Okura N, Takayama C, Suzuki T (2011) Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages. Cell Microbiol 13:1783–1792. https://doi.org/10.1111/j.1462-5822.2011.01660.x

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Wang Y, Guo X et al (2014) Carboxyfluorescein diacetate succinimidyl ester labeling method to study the interaction between Leptospira and macrophages. J Microbiol Methods 107:205–213. https://doi.org/10.1016/j.mimet.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  7. Davis JM, Haake DA, Ramakrishnan L (2009) Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues. PLoS Negl Trop Dis 3:e463. https://doi.org/10.1371/journal.pntd.0000463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen X, Li S-J, Ojcius DM et al (2017) Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis. PLoS One 12:e0181014. https://doi.org/10.1371/journal.pone.0181014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li S, Ojcius DM, Liao S et al (2010) Replication or death: distinct fates of pathogenic Leptospira strain Lai within macrophages of human or mouse origin. Innate Immun 16:80–92. https://doi.org/10.1177/1753425909105580

    Article  PubMed  Google Scholar 

  10. Wang B, Sullivan JA, Sullivan GW, Mandell GL (1984) Role of specific antibody in interaction of leptospires with human monocytes and monocyte-derived macrophages. Infect Immun 46:809–813

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, Zhang C, Ojcius DM et al (2012) The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals. Mol Microbiol 83:1006–1023. https://doi.org/10.1111/j.1365-2958.2012.07985.x

    Article  CAS  PubMed  Google Scholar 

  12. Xue F, Zhao X, Yang Y et al (2013) Responses of murine and human macrophages to leptospiral infection: a study using comparative array analysis. PLoS Negl Trop Dis 7:e2477. https://doi.org/10.1371/journal.pntd.0002477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jongyota W, Wigraipat C, Nontapa S et al (2008) Differential response of cytokines induced by Leptospira interrogans, serogroup Pomona, serovar Pomona, in mouse and human cell lines. Asian Pac J Allergy Immunol 26:229–236

    CAS  PubMed  Google Scholar 

  14. Goris MGA, Wagenaar JFP, Hartskeerl RA et al (2011) Potent innate immune response to pathogenic Leptospira in human whole blood. PLoS One 6:e18279. https://doi.org/10.1371/journal.pone.0018279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nahori M-A, Fournié-Amazouz E, Que-Gewirth NS et al (2005) Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol 175:6022–6031

    Article  CAS  PubMed  Google Scholar 

  16. Gomes-Solecki M, Santecchia I, Werts C (2017) Animal models of Leptospirosis: of mice and hamsters. Front Immunol 8:58. https://doi.org/10.3389/fimmu.2017.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raffray L, Giry C, Vandroux D et al (2016) Major neutrophilia observed in acute phase of human leptospirosis is not associated with increased expression of granulocyte cell activation markers. PLoS One 11:e0165716. https://doi.org/10.1371/journal.pone.0165716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raffray L, Giry C, Thirapathi Y et al (2017) Increased levels of soluble forms of E-selectin and ICAM-1 adhesion molecules during human leptospirosis. PLoS One 12:e0180474. https://doi.org/10.1371/journal.pone.0180474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bellomo R, Ronco C, Kellum JA et al (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) Group. Crit Care 8:R204–212. https://doi.org/10.1186/cc2872

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bone RC, Balk RA, Cerra FB et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. Am Coll Chest Phys Soc Critical Care Med Chest 101:1644–1655

    CAS  Google Scholar 

  21. Giry C, Roquebert B, Li-Pat-Yuen G et al (2017) Simultaneous detection of chikungunya virus, dengue virus and human pathogenic Leptospira genomes using a multiplex TaqMan® assay. BMC Microbiol 17:105. https://doi.org/10.1186/s12866-017-1019-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levett PN, Morey RE, Galloway RL et al (2005) Detection of pathogenic leptospires by real-time quantitative PCR. J Med Microbiol 54:45–49

    Article  CAS  PubMed  Google Scholar 

  23. Ziegler-Heitbrock L, Ancuta P, Crowe S et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80. https://doi.org/10.1182/blood-2010-02-258558

    Article  CAS  PubMed  Google Scholar 

  24. Pagès F, Polycarpe D, Dehecq J-S et al (2014) Human leptospirosis on Reunion Island: past and current burden. Int J Environ Res Public Health 11:968–982. https://doi.org/10.3390/ijerph110100968

    Article  PubMed  PubMed Central  Google Scholar 

  25. Delmas B, Jabot J, Chanareille P et al (2017) Leptospirosis in ICU: a retrospective study of 134 consecutive admissions. Crit Care Med. https://doi.org/10.1097/CCM.0000000000002825

    Article  Google Scholar 

  26. Guernier V, Lagadec E, Cordonin C et al (2016) Human Leptospirosis on Reunion Island, Indian Ocean: are rodents the (only) ones to blame? PLoS Negl Trop Dis 10:e0004733. https://doi.org/10.1371/journal.pntd.0004733

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Silva NL, Niloofa M, Fernando N et al (2014) Changes in full blood count parameters in leptospirosis: a prospective study. Int Arch Med 7:31. https://doi.org/10.1186/1755-7682-7-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Craig SB, Graham GC, Burns M-A et al (2009) Haematological and clinical-chemistry markers in patients presenting with leptospirosis: a comparison of the findings from uncomplicated cases with those seen in the severe disease. Ann Trop Med Parasitol 103:333–341. https://doi.org/10.1179/136485909X435058

    Article  CAS  PubMed  Google Scholar 

  29. Wong KL, Yeap WH, Tai JJY et al (2012) The three human monocyte subsets: implications for health and disease. Immunol Res 53:41–57. https://doi.org/10.1007/s12026-012-8297-3

    Article  CAS  PubMed  Google Scholar 

  30. Fingerle G, Pforte A, Passlick B et al (1993) The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood 82:3170–3176

    Article  CAS  Google Scholar 

  31. Skrzeczyñska J, Kobylarz K, Hartwich Z et al (2002) CD14+ CD16+ monocytes in the course of sepsis in neonates and small children: monitoring and functional studies. Scand J Immunol 55:629–638

    Article  PubMed  Google Scholar 

  32. Mukherjee R, Kanti Barman P, Kumar Thatoi P et al (2015) Non-classical monocytes display inflammatory features: validation in sepsis and systemic lupus erythematous. Sci Rep 5:13886. https://doi.org/10.1038/srep13886

    Article  PubMed  PubMed Central  Google Scholar 

  33. Poehlmann H, Schefold JC, Zuckermann-Becker H et al (2009) Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit Care 13:R119. https://doi.org/10.1186/cc7969

    Article  PubMed  PubMed Central  Google Scholar 

  34. Monneret G, Finck M-E, Venet F et al (2004) The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol Lett 95:193–198. https://doi.org/10.1016/j.imlet.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  35. Landelle C, Lepape A, Voirin N et al (2010) Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med 36:1859–1866. https://doi.org/10.1007/s00134-010-1962-x

    Article  CAS  PubMed  Google Scholar 

  36. Monneret G, Lepape A, Voirin N et al (2006) Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med 32:1175–1183. https://doi.org/10.1007/s00134-006-0204-8

    Article  PubMed  Google Scholar 

  37. Diament D, Brunialti MKC, Romero EC et al (2002) Peripheral blood mononuclear cell activation induced by Leptospira interrogans glycolipoprotein. Infect Immun 70:1677–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salomao R, Brunialti MKC, Rapozo MM et al (2012) Bacterial sensing, cell signaling, and modulation of the immune response during sepsis. Shock 38:227–242. https://doi.org/10.1097/SHK.0b013e318262c4b0

    Article  CAS  PubMed  Google Scholar 

  39. Brunialti MKC, Martins PS, Barbosa de Carvalho H et al (2006) TLR2, TLR4, CD14, CD11B, and CD11C expressions on monocytes surface and cytokine production in patients with sepsis, severe sepsis, and septic shock. Shock 25:351–357. https://doi.org/10.1097/01.shk.0000217815.57727.29

    Article  CAS  PubMed  Google Scholar 

  40. Cinco M, Vecile E, Murgia R et al (1996) Leptospira interrogans and Leptospira peptidoglycans induce the release of tumor necrosis factor alpha from human monocytes. FEMS Microbiol Lett 138:211–214

    Article  CAS  PubMed  Google Scholar 

  41. Russwurm S, Vickers J, Meier-Hellmann A et al (2002) Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 17:263–268

    Article  PubMed  Google Scholar 

  42. Jämsä J, Huotari V, Savolainen E-R et al (2015) Kinetics of leukocyte CD11b and CD64 expression in severe sepsis and non-infectious critical care patients. Acta Anaesthesiol Scand 59:881–891. https://doi.org/10.1111/aas.12515

    Article  CAS  PubMed  Google Scholar 

  43. Vieira ML, Naudin C, Mörgelin M et al (2016) Modulation of hemostatic and inflammatory responses by Leptospira Spp. PLoS Negl Trop Dis 10:e0004713. https://doi.org/10.1371/journal.pntd.0004713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dorigatti F, Brunialti MKC, Romero EC et al (2005) Leptospira interrogans activation of peripheral blood monocyte glycolipoprotein demonstrated in whole blood by the release of IL-6. Braz J Med Biol Res 38:909–914

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the practitioners implicated in the patients’ care as well as the members of the microbiology laboratory of St Denis, La Réunion, for their help in patients’ recruitment. We also thank Alexander Greenshields for critical appraisal of the manuscript.

Funding

The authors work is funded by the research unit PIMIT (processus infectieux en milieu insulaire tropical) and the CHU (centre hospitalo-universaire) de la Réunion. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loic Raffray.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare.

Ethical approval

This study was approved by the local human ethic committee of tertiary teaching Hospital ‘CHU de La Réunion’ (protocol number R15018) and conducted according to the principles expressed in the Declaration of Helsinki. Informed consent was obtained from all individual participants included in the study.

Additional information

Edited by: C.Bogdan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1: Evolution of monocyte cell counts during hospitalization and convalescent phase for 10 leptospirosis patients. Caption

: Paired values of monocytes for leptospirosis cases during hospitalization (admittance and maximal value) and 1 month after discharge (M1). Comparisons with non-parametric Wilcoxon paired test. ** indicates P value inferior to 0.01, respectively. (TIFF 315 KB)

Supplementary Fig. 2: Higher

bacteraemia in severe leptospirosis cases. Caption: Plasmatic Leptospira load is established from the 50 patients with positive RT-qPCR in blood and using the log-transformed standard curve. Horizontal bars indicate the median and IQR ranges. Comparison with non-parametric Mann-Whitney test. ** indicates P value inferior to 0.01. (TIFF 289 KB)

Supplementary Fig. 3: Higher levels of cell surface expression of CD69 on monocytes in severe cases of leptospirosis Caption

: comparison of selected cell surface markers among healthy donors and leptospirosis patients according to disease severity. Horizontal bars indicate the median and IQR ranges for mean fluorescence intensity (MFI). Comparison with non-parametric Mann-Whitney test. **, **** indicate P values inferior to 0.01 and 0.0001, respectively. (TIFF 667 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffray, L., Giry, C., Vandroux, D. et al. The monocytosis during human leptospirosis is associated with modest immune cell activation states. Med Microbiol Immunol 208, 667–678 (2019). https://doi.org/10.1007/s00430-018-0575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-018-0575-9

Keywords

Navigation