Medical Microbiology and Immunology

, Volume 205, Issue 4, pp 371–379 | Cite as

Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS)

  • Manuela Bonizzoli
  • Rosaria Arvia
  • Simona di Valvasone
  • Francesco Liotta
  • Krystyna Zakrzewska
  • Alberta AzziEmail author
  • Adriano Peris
Original Investigation


Acute respiratory distress syndrome (ARDS) is today a leading cause of hospitalization in intensive care unit (ICU). ARDS and pneumonia are closely related to critically ill patients; however, the etiologic agent is not always identified. The presence of human herpes simplex virus 1, human cytomegalovirus and Epstein–Barr virus in respiratory samples of critically ill patients is increasingly reported even without canonical immunosuppression. The main aim of this study was to better understand the significance of herpesviruses finding in lower respiratory tract of ARDS patients hospitalized in ICU. The presence of this group of herpesviruses, in addition to the research of influenza viruses and other common respiratory viruses, was investigated in respiratory samples from 54 patients hospitalized in ICU, without a known microbiological causative agent. Moreover, the immunophenotype of each patient was analyzed. Herpesviruses DNA presence in the lower respiratory tract seemed not attributable to an impaired immunophenotype, whereas a significant correlation was observed between herpesviruses positivity and influenza virus infection. A higher ICU mortality was significantly related to the presence of herpesvirus infection in the lower respiratory tract as well as to impaired immunophenotype, as patients with poor outcome showed severe lymphopenia, affecting in particular T (CD3+) cells, since the first days of ICU hospitalization. In conclusion, these results indicate that herpesviruses lower respiratory tract infection, which occurs more frequently following influenza virus infection, can be a negative prognostic marker. An independent risk factor for ICU patients with ARDS is an impaired immunophenotype.


Herpesvirus 1 Cytomegalovirus Epstein–Barr virus Influenza viruses Intensive therapy Acute respiratory distress syndrome 


  1. 1.
    Friedrichs I, Bingold T, Keppler OT, Pullmann B, Reinheimer C, Berger A (2013) Detection of herpesvirus EBV DNA in the lower respiratory tract of ICU patients: a marker of infection of the lower respiratory tract? Med Microbiol Immunol 202:431–436CrossRefPubMedGoogle Scholar
  2. 2.
    Luyt CE, Combes A, Deback C, Aubriot-Lorton MH, Nieszkowska A, Trouillet JL, Capron F, Agut H, Gibert C, Chastre J (2007) Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am J Respir Crit Care Med 175:935–942CrossRefPubMedGoogle Scholar
  3. 3.
    Smith CA, Conroy LT, Pollock M, Ruddy J, Binning A, Mc Cruden EAB (2010) Detection of herpes viruses in respiratory secretions of patients undergoing artificial ventilation. J Med Virol 82:1406–1409CrossRefPubMedGoogle Scholar
  4. 4.
    De Vos N, Van Hoovels L, Vankeerberghen A, Van Vaerenbergh K, Boel A, Demeyer I, Creemers L, De Beenhouwer H (2009) Monitoring of herpes simplex virus in the lower respiratory tract of critically ill patients using real-time PCR: a prospective study. Clin Microbiol Infect 15:358–363CrossRefPubMedGoogle Scholar
  5. 5.
    Costa C, Sidoti F, Saldan A, Sinesi F, Balloco C, Simeone S, Lorusso M, Mantovani S, Merlino C, Solidoro P, Cavallo R (2012) Clinical impact of HSV-1 detection in the lower respiratory tract from hospitalized adult patients. Clin Microbiol Infect 18(8):E305–307CrossRefPubMedGoogle Scholar
  6. 6.
    Prellner T, Flamholc L, Haidl S, Lindholm K, Widell A (1992) Herpes simplex virus the most frequently isolated pathogen in the lungs of patients with severe respiratory distress. Scand J Infect Dis 24:283–292CrossRefPubMedGoogle Scholar
  7. 7.
    Tuxen DV, Cade JF, McDonald MI, Buchanan MRC, Clark RJ, Pain MCF (1982) Herpes simplex virus from the lower respiratory tract in adult respiratory distress syndrome. Am Rev Respir Dis 126:416–419PubMedGoogle Scholar
  8. 8.
    Bruynseels P, Jorens PG, Demey HE, Goossens H, Pattyn SR, Elseviers MM, Weyler J, Bossaert LL, Mentens Y, Ieven M (2003) Herpes simplex virus in the respiratory tract of critical care patients: a prospective study. Lancet 362:1536–1541CrossRefPubMedGoogle Scholar
  9. 9.
    Oud L et al (2006) Comment on: ‘nosocomial viral ventilator-associated pneumonia in the intensive care unit’ by Daubin et al. Intensive Care Med 32:613CrossRefPubMedGoogle Scholar
  10. 10.
    Ramsey PG, Fife KH, Hackman RC, Meyers JD, Corey L (1982) Herpes simplex virus pneumonia: clinical, virologic, and pathologic features in 20 patients. Ann Intern Med 97:813–820CrossRefPubMedGoogle Scholar
  11. 11.
    Chiche L, Forel JM, Roch A, Guervilly C, Pauly V, Allardet-Servent J, Gainnier M, Zandotti C, Papazian L (2009) Active cytomegalovirus infection is common in mechanically ventilated medical intensive care unit patients. Crit Care Med 37:1850–1857CrossRefPubMedGoogle Scholar
  12. 12.
    Frobert E, Billaud G, Casalegno JS, Eibach D, Goncalves D, Robert JM, Lina B, Morfin F (2013) The clinical interest of HSV1 semi-quantification in bronchoalveolar lavage. J Clin Virol 58:265–268CrossRefPubMedGoogle Scholar
  13. 13.
    Blanquer J, Chilet M, Benet I, Aguilar G, Mun˜ oz-Cobo B, Tellez A, Costa E, Bravo D, Navarro D (2011) Immunological insights into the pathogenesis of active CMV infection in non-immunosuppressed critically ill patients. J Med Virol 83:1966–1971CrossRefPubMedGoogle Scholar
  14. 14.
    Kalil AC, Florescu DF (2009) Prevalence and mortality associated with cytomegalovirus infection in non-immunosuppressed patients in the intensive care unit. Crit Care Med 37:2350–2358CrossRefPubMedGoogle Scholar
  15. 15.
    Limaye AP, Boeckh M (2010) CMV in critically ill patients: pathogen or bystander? Rev Med Virol 20:372–379CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ziemann M, Sedemund-Adib B, Reiland P, Schmucker P, Hennig H (2008) Increased mortality in long-term intensive care patients with active cytomegalovirus infection. Crit Care Med 36:3145–3150CrossRefPubMedGoogle Scholar
  17. 17.
    Von Muller L, Klemm A, Weiss M, Schneider M, Suger-Wiedeck H, Durmus N, Hampl W, Mertens T (2006) Active cytomegalovirus infection in patients with septic shock. Emerg Infect Dis 12:1517–1522CrossRefGoogle Scholar
  18. 18.
    Young LS, Rickinson AB (2004) Epstein–Barr virus:40 years on. Nat Rev Cancer 4:757–768. doi: 10.1038/nrc1452 CrossRefPubMedGoogle Scholar
  19. 19.
    Gooskens J, Templeton KE, Claas EC, van Bussel MJ, Smit VT, Kroes AC (2007) Quantitative detection of herpes simplex virus DNA in the lower respiratory tract. J Med Virol 79:597–604CrossRefPubMedGoogle Scholar
  20. 20.
    Costa C, Elia M, Astegiano S, Sidoti F, Terlizzi ME, Solidoro P, Botto S, Libertucci D, Bergallo M, Cavallo R (2008) Quantitative detection of Epstein–Barr virus in bronchoalveolar lavage from transplant and nontransplant patients. Transplantation 86:1389–1394. doi: 10.1097/TP.0b013e3181890415 CrossRefPubMedGoogle Scholar
  21. 21.
    Costa C, Delsedime L, Solidoro P, Curtoni A, Bergallo M, Libertucci D, Baldi S, Rinaldi M, Cavallo R (2010) Herpesviruses detection by quantitative real-time polymerase chain reaction in bronchoalveolar lavage and transbronchial biopsy in lung transplant: viral infections and histopathological correlation. Transplant Proc 42:1270–1274. doi: 10.1016/j.transproceed.2010.03.086 CrossRefPubMedGoogle Scholar
  22. 22.
    Bauer TT, Ewig S, Rodloff AC, Müller EE (2006) Acute respiratory distress syndrome and pneumonia: a comprehensive review of clinical data. Clin Infect Dis 43(6):748–756CrossRefPubMedGoogle Scholar
  23. 23.
    Bauer TT, Valencia M, Badia JR, Ewig S, González J, Ferrer M, Torres A (2005) Respiratory microbiology patterns within the first 24 h of ARDS diagnosis: influence on outcome. Chest 128(1):273–279CrossRefPubMedGoogle Scholar
  24. 24.
    Payen D, Faivre V, Lukaszewicz AC, Losser MR (2000) Assessment of immunological status in the critically ill. Minerva Anestesiol 66(5):351–357PubMedGoogle Scholar
  25. 25.
    Wimberley LL, Falling J, Bartlett JG (1979) A fiberoptic bronchoscopy technique to obtain uncontaminated lower airway secretions for bacterial culture. Am Rev Respir Dis 119:337–343PubMedGoogle Scholar
  26. 26.
    The WHO Collaborating Centre for influenza at CDC Atlanta, United States of America. CDC protocol of real time RT PCR for Swine Influenza A(H1N1) 2009. Accessed 29 April 2009
  27. 27.
    Arvia R, Corcioli F, Ciccone N, Della Malva N, Azzi A (2015) Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples. Mol Cell Probes 29:408–413CrossRefPubMedGoogle Scholar
  28. 28.
    Bouscambert Duchamp M, Casalegno JS, Gillet Y, Frobert E, Bernard E, Escuret V, Billaud G, Valette M, Javouhey E, Lina B, Floret D, Morfin F (2010) Pandemic A(H1N1) 2009 influenza virus detection by real time RT-PCR:is viral quantification useful? Clin Microbiol Infect 16(4):317–321. doi: 10.1111/j.1469-0691.2010.03169 CrossRefPubMedGoogle Scholar
  29. 29.
    Bauer HM, Ting Y, Greer CE, Chambers JC, Tashiro CJ, Chimera J, Reingold A, Manos MM (1991) Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA 265(4):472–477CrossRefPubMedGoogle Scholar
  30. 30.
    Shi SJ, Li H, Liu M, Liu YM, Zhou F, Liu B, Qu JX, Cao B (2015) Mortality prediction to hospitalized patients with influenza pneumonia:PO2/FiO2 combined lymphocyte count is the answer. Clin Respir J. doi: 10.1111/crj.12346 Google Scholar
  31. 31.
    Drewry AM, Samra N, Skrupky LP, Fuller BM, Compton SM, Hotchkiss RS (2014) Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock 42(5):383–391CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Boonnak K, Vogel L, Feldmann F, Feldmann H, Legge KL, Subbarao K (2014) Lymphopenia associated with highly virulent H5N1 virus infection due to plasmacytoid dendritic cell-mediated apoptosis of T cells. J Immunol 192(12):5906–5912CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rovina N, Erifaki M, Katsaounou P, Lyxi G, Koutsoukou A, Koulouris GN, Alchanatis M (2014) Subjects Hospitalized With the 2009 Pandemic Influenza A (H1N1) Virus in a Respiratory Infection Unit: Clinical Factors Correlating With ICU Admission. Respir Care 59(10):1560–1568. doi: 10.4187/respcare.03049 CrossRefPubMedGoogle Scholar
  34. 34.
    Lepiller Q, Sueur C, Solis M, Barth H, Glady L, Lefebvre F, Fafi-Kremer S, Schneider F, Stoll-Keller F (2015) Clinical relevance of herpes simplex virus viremia in Intensive Care Unit patients. J Infect 71(1):93–100. doi: 10.1016/j.jinf.2015.02.013 CrossRefPubMedGoogle Scholar
  35. 35.
    Tachikawa R, Tomii K, Seo R, Nagata K, Otsuka K, Nakagawa A, Otsuka K, Hashimoto H, Watanabe K, Shimizu N (2013) Detection of herpes viruses by multiplex and real-time polymerase chain reaction in bronchoalveolar lavage fluid of patients with acute lung injury or acute respiratory distress syndrome. Respiration 87:279–286. doi: 10.1159/000355200 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Manuela Bonizzoli
    • 1
  • Rosaria Arvia
    • 2
  • Simona di Valvasone
    • 1
  • Francesco Liotta
    • 2
  • Krystyna Zakrzewska
    • 2
  • Alberta Azzi
    • 2
    Email author
  • Adriano Peris
    • 1
  1. 1.Intensive Care Unit and Regional ECMO Referral CenterAzienda Ospedaliero-Universitaria CareggiFlorenceItaly
  2. 2.Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly

Personalised recommendations