Medical Microbiology and Immunology

, Volume 205, Issue 1, pp 21–35 | Cite as

Involvement of sulfates from cruzipain, a major antigen of Trypanosoma cruzi, in the interaction with immunomodulatory molecule Siglec-E

  • Maximiliano R. Ferrero
  • Anja M. Heins
  • Luciana L. Soprano
  • Diana M. Acosta
  • Mónica I. Esteva
  • Thomas Jacobs
  • Vilma G. DuschakEmail author
Original Investigation


In order to investigate the involvement of sulfated groups in the Trypanosoma cruzi host–parasite relationship, we studied the interaction between the major cysteine proteinase of T. cruzi, cruzipain (Cz), a sulfate-containing sialylated molecule and the sialic acid-binding immunoglobulin like lectin-E (Siglec-E). To this aim, ELISA, indirect immunofluorescence assays and flow cytometry, using mouse Siglec-E–Fc fusion molecules and glycoproteins of parasites, were performed. Competition assays verified that the lectins, Maackia amurensis II (Mal II) and Siglec-E–Fc, compete for the same binding sites. Taking into account that Mal II binding remains unaltered by sulfation, we established this lectin as sialylation degree control. Proteins of an enriched microsomal fraction showed the highest binding to Siglec-E as compared with those from the other parasite subcellular fractions. ELISA assays and the affinity purification of Cz by a Siglec-E column confirmed the interaction between both molecules. The significant decrease in binding of Siglec-E–Fc to Cz and to its C-terminal domain (C-T) after desulfation of these molecules suggests that sulfates contribute to the interaction between Siglec-E–Fc and these glycoproteins. Competitive ELISA assays confirmed the involvement of sulfated epitopes in the affinity between Siglec-E and Cz, probably modified by natural protein environment. Interestingly, data from flow cytometry of untreated and chlorate-treated parasites suggested that sulfates are not primary receptors, but enhance the binding of Siglec-E to trypomastigotic forms. Altogether, our findings support the notion that sulfate-containing sialylated glycoproteins interact with Siglec-E, an ortholog protein of human Siglec-9, and might modulate the immune response of the host, favoring parasitemia and persistence of the parasite.


Trypanosoma cruzi Siglecs Cruzipain Sialic acid Sulfates Immunomodulation 



The authors thank the Secretaría de Ciencia y Técnica, Ministerio de Salud de la Nación Argentina and Deutscher Akademischer Austausch Dienst (MinCyT-DAAD) for the Bilateral Cooperation (DA0911), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Agencia Nacional de Promoción Científica (ANPCyT, PICT 2006-00145), for grants provided. V.G.D. is a Research Career Investigator from CONICET, Argentina. LLS thanks FONCYT fellowship; D.M.A., M.R.F. LLS and CONICET fellowships granted. TJ and AH received funding from the collaborative research center 470 and the “Vereinigung der Freunde des Tropeninstituts.” The authors also thank to Cristina Maidana, member of the Production Department, INP Dr M. Fatala Chaben, ANLIS-Malbrán.


  1. 1.
  2. 2.
    Gascon J, Bern C, Pinazo MJ (2010) Chagas disease in Spain, the United States and other non-endemic countries. ActaTrop 115:22–27 Review Google Scholar
  3. 3.
    Pérez-Molina JA, Norman F, López-Vélez R (2012) Chagas disease in non-endemic countries: epi-demiology, clinical presentation and treatment. Curr Infect Dis Rep 14:263–274CrossRefPubMedGoogle Scholar
  4. 4.
    Scharfstein J, Rodriguez MM, Alves CA, de Souza W, Previato JO, Mendonca-Previato L (1983) Trypanosoma cruzi: description of a highly purified surface antigen defined by human antibodies. J Immunol 131(2):972–976PubMedGoogle Scholar
  5. 5.
    Scharfstein J, Luquetti A, Murta AC, Senna M, Rezende JM, Rassi A, Mendonça-Previato L (1985) Chagas’ disease: serodiagnosis with purified Gp25 antigen. Am J Trop Med Hyg 34(6):1153–1160PubMedGoogle Scholar
  6. 6.
    Martinez J, Campetella O, Frasch ACC, Cazzulo JJ (1991) The major cysteine proteinase (cruzipain) from is antigenic in human infections. Infect Immun 59(11):4275–4277PubMedCentralPubMedGoogle Scholar
  7. 7.
    Martinez J, Campetella O, Frasch ACC, Cazzulo JJ (1993) The reactivity of sera from chagasic patients against different fragments of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, suggests the presence of defined antigenic and catalytic domains. Immunol Lett 35:191–196CrossRefPubMedGoogle Scholar
  8. 8.
    Cazzulo JJ, Labriola C, Parussini F, Duschak VG, Martinez J, Franke de Cazzulo BM (1995) Cysteine proteinases in Trypanosoma cruzi and other Trypanosomatid parasites. Acta Chim Slov 42:409–418Google Scholar
  9. 9.
    Cazzulo JJ, Hellman U, Couso R, Parodi AJA (1990) Amino acid and carbohydrate composition of a lysosomal cysteine proteinase from Trypanosoma cruzi. Absence of phosphorylated mannose residues. Mol Biochem Parasitol 38:41–48CrossRefPubMedGoogle Scholar
  10. 10.
    Parodi AJA, Labriola C, Cazzulo JJ (1995) The presence of complex-type oligosaccharides at the C-terminal domain glycosylation site of some molecules of cruzipain. Mol Biochem Parasitol 69:247–255CrossRefPubMedGoogle Scholar
  11. 11.
    Barboza M, Duschak VG, Fukuyama Y, Nonami H, Erra-Balsells R, Cazzulo JJ, Couto AS (2005) Structural analysis of the N-glycans of the major cysteine proteinase of Trypanosoma cruzi. Identification of sulfated high-mannose type oligosaccharides. FEBS J 272:3803–3815CrossRefPubMedGoogle Scholar
  12. 12.
    Scharfstein J, Schmitz V, Morandi V, Capella MM, Lima AP, Morrot A, Juliano L, Müller-Esterl W (2000) Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med 6(192):1289–1300CrossRefGoogle Scholar
  13. 13.
    Benítez-Hernández I, Méndez-Enríquez E, Ostoa P, Fortoul T, Ramírez JA, Stempin C, Cerbán F, Soldevila G, García-Zepeda EA (2010) Proteolytic cleavage of chemokines by Trypanosoma cruzi’s cruzipain inhibits chemokine functions by promoting the generation of antagonists. Immunobiology 215:413–426CrossRefPubMedGoogle Scholar
  14. 14.
    Doyle PS, Zhou YM, Hsieh I, Greenbaum DC, McKerrow JH, Engel JC (2011) The Trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog 7(9):1–11Google Scholar
  15. 15.
    Duschak VG, Couto AS (2009) Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. Curr Med Chem 16:3174–3202 Review CrossRefPubMedGoogle Scholar
  16. 16.
    Cazorla SI, Frank FM, Malchiodi EL (2009) Vaccination approaches against Trypanosoma cruzi infection. Expert Rev Vaccines 8:921–935 Review CrossRefPubMedGoogle Scholar
  17. 17.
    Cazzulo JJ, Stoka V, Turk V (2001) Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi. Curr Pharm Des 7:1143–1156CrossRefGoogle Scholar
  18. 18.
    Duschak VG (2011) A decade of targets and patented drugs for chemotherapy of chagas disease. Recent Pat Antiinfect Drug Discov 6:216–259CrossRefPubMedGoogle Scholar
  19. 19.
    Barboza M, Duschak VG, Cazzulo JJ, Lederkremer RM, Couto AS (2003) Presence of sialic acid in N-linked oligosaccharide chains and O-linked N-acetylglucosamine in cruzipain, the major cysteine proteinase of Trypanosoma cruzi. Mol Biochem Parasitol 126:293–296CrossRefPubMedGoogle Scholar
  20. 20.
    Acosta DM, Arnaiz MR, Esteva MI, Barboza M, Stivale D, Orlando UD, Torres S, Laucella SA, Couto AS, Duschak VG (2008) Sulfates are main targets of immune responses to cruzipain and are involved in heart damage in BALB/c immunized mice. Int Immunol 20:461–470CrossRefPubMedGoogle Scholar
  21. 21.
    Acosta DM, Soprano LL, Ferrero MR, Esteva MI, Riarte AR, Couto AS, Duschak VG (2012) Structural and immunological characterization of sulfatides: relevance of sulfate moieties in Trypanosoma cruzi glycoconjugates. Parasite Immunol 34:499–510CrossRefPubMedGoogle Scholar
  22. 22.
    Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266 Review CrossRefPubMedGoogle Scholar
  23. 23.
    Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T (2009) Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell Microbiol 11:1600–1611CrossRefPubMedGoogle Scholar
  24. 24.
    Crocker PR (2005) Siglec in innate immunity. Curr Opin Pharmacol 5:431–437 Review CrossRefPubMedGoogle Scholar
  25. 25.
    Varki A, Angata T (2006) Siglecs, the major subfamily of type-1 lectins. Glycobiology 16(1):1–27 Review CrossRefGoogle Scholar
  26. 26.
    Jacobs T, Erdmann H, Fleischer B (2010) Molecular interaction of Siglecs (sialic acid-binding Ig-like lectins) with sialylated ligands on Trypanosoma cruzi. Eur J Cell Biol 89:113–116CrossRefPubMedGoogle Scholar
  27. 27.
    Rapoport EM, Pazynina GV, Sablina MA, Crocker PR, Bovin NV (2006) Probing sialic acid binding Ig-like lectins (siglecs) with sulfated oligosaccharides. Biochemistry (Mosc) 71:496–504CrossRefGoogle Scholar
  28. 28.
    Cazzulo JJ, Franke de Cazzulo BM, Engel JC, Cannata JJ (1985) End products and enzymes levels of aerobic glucose fermentation in Trypanosomatids. Mol Biochem Parasitol 16:329–343CrossRefPubMedGoogle Scholar
  29. 29.
    Andrews NW, Colli W (1982) Adhesion and interiorization of Trypanosoma cruzi in mammalian cells. J Protozool 29:264–269CrossRefPubMedGoogle Scholar
  30. 30.
    Ey PL, Prowse SJ, Jenkin CR (1978) Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-Sepharose. Immunochemistry 15:429–436CrossRefPubMedGoogle Scholar
  31. 31.
    Acosta DM, Soprano LL, Ferrero M, Landoni M, Esteva MI, Couto AS, Duschak VG (2011) A striking common O-linked N-acetylglucosaminyl moiety between cruzipain and myosin. Parasite Immunol 33:363–370CrossRefPubMedGoogle Scholar
  32. 32.
    Freeze HH, Yeh R, Miller AL, Kornfeld S (1983) Structural analysis of the asparagine-linked oligosaccharides from three lysosomal enzymes of Dictyostelium discoideum. Evidence for an unusual acid-stable phosphodiester. J Biol Chem 258(24):14874–14879PubMedGoogle Scholar
  33. 33.
    Parussini F, Duschak VG, Cazzulo JJ (1998) Membrane-bound cysteine proteinase isoforms in different developmental stages of Trypanosoma cruzi. Cell Mol Biol 44:513–519PubMedGoogle Scholar
  34. 34.
    Duschak VG, Barboza M, Garcia GA, Lammel EM, Couto AS, Isola EL (2006) Novel cysteine proteinase in Trypanosoma cruzi metacyclogenesis. Parasitology 132:345–355CrossRefPubMedGoogle Scholar
  35. 35.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRefPubMedGoogle Scholar
  36. 36.
    Oakley BR, Kirsch DR, Morris R (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105:361–363CrossRefGoogle Scholar
  37. 37.
    Duschak VG, Ciaccio M, Nasser JR, Basombrio MA (2001) Enzymatic activity, protein expression and gene sequence of cruzipain in virulent and attenuated Trypanosoma cruzi strains. J Parasitol 87:1016–1022CrossRefPubMedGoogle Scholar
  38. 38.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  39. 39.
    Bradford J (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248CrossRefPubMedGoogle Scholar
  40. 40.
    Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedures and some application. Proc Natl Acad Sci USA 76:4350–4354PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Ferrero MR, Soprano LL, Acosta DM, García GA, Esteva MI, Couto AS, Duschak VG (2014) Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion. Acta Trop 137:161–173CrossRefPubMedGoogle Scholar
  42. 42.
    Duschak VG, Cazzulo JJ (1991) Subcellular localization of glutamate dehydrogenases and alanine aminotransferase in epimastigotes of Trypanosoma cruzi. FEMS Microbiol Lett 83:131–136Google Scholar
  43. 43.
    Klaassen CD, Boles JW (1997) Sulfation and sulfotransferases 5: the importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 11(6):404–418PubMedGoogle Scholar
  44. 44.
    Baeuerle PA, Huttner WB (1986) Chlorate. A potent inhibitor of protein sulfation in intact cells. Biochem Biophys Res Commun 141(2):870–877CrossRefPubMedGoogle Scholar
  45. 45.
    Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848CrossRefPubMedGoogle Scholar
  46. 46.
    Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22CrossRefPubMedGoogle Scholar
  47. 47.
    Fukuda M, Hiraoka N, Akama TO, Fukuda MN (2001) Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. J Biol Chem 276:47747–47750CrossRefPubMedGoogle Scholar
  48. 48.
    Vermelho AB, de Meirelles MDN, Pereira MC, Pohlentz G, Barreto-Bergter E (1997) Heart muscle cells share common neutral glycosphingolipids with Trypanosoma cruzi. Acta Trop 64:131–143CrossRefPubMedGoogle Scholar
  49. 49.
    Petry K, Nudelman E, Eisen H, Hakomori S (1988) Sulfated lipids represent common antigens on the surface of Trypanosoma cruzi and mammalian tissues. Mol Biochem Parasitol 30:113–121CrossRefPubMedGoogle Scholar
  50. 50.
    Uhrig ML, Couto AS, Zingales B, Colli W, Lederkremer RM (1992) Metabolic labelling and partial characterisation of a sulfoglycolipid in Trypanosoma cruzi trypomastigotes. Carbohydr Res 231:329–334CrossRefPubMedGoogle Scholar
  51. 51.
    Bernstein HB, Compans RW (1992) Sulfation of the human immunodeficiency virus envelope glycoprotein. J Virol 66:6953–6959PubMedCentralPubMedGoogle Scholar
  52. 52.
    Van Rooijen JJ, Kamerling JP, Vliegenthart JF (1998) Sulfated di-, tri- and tetraantennary N-glycans in human Tamm-Horsfall glycoprotein. Eur J Biochem 256:471–487CrossRefPubMedGoogle Scholar
  53. 53.
    Kawasaki N, Ohta M, Hyuga S, Hashimoto O, Hayakawa T (2000) Application of liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry to the analysis of the site specific carbohydrate heterogeneity in erythropoietin. Anal Biochem 285:82–91CrossRefPubMedGoogle Scholar
  54. 54.
    Honke K, Taniguchi N (2002) Sulfotransferases and sulfated oligosaccharides. Med Res Rev 22:637–654CrossRefPubMedGoogle Scholar
  55. 55.
    Stoka V, Nycander M, Lenarcic B, Labriola C, Cazzulo JJ, Bjork I, Turk V (1995) Inhibition of cruzipain, the major cysteine proteinase of the protozoan parasite, Trypanosoma cruzi, by proteinase inhibitors of the cystatin superfamily. FEBS Lett 370:101–104CrossRefPubMedGoogle Scholar
  56. 56.
    Martínez J, Henriksson J, Ridåker M, Pettersson U, Cazzulo JJ (1998) Polymorphisms of the genes encoding cruzipain, the major cysteine proteinase of Trypanosoma cruzi, in the region encoding the C-terminal domain. FEMS Microbiol Lett 159:35–39CrossRefPubMedGoogle Scholar
  57. 57.
    Cazzulo JJ, Martinez JA, Parodi AJA, Wernstedt CH, Hellman U (1992) On the post-translational modifications at the C-terminal domain of the major cysteine proteinase (cruzipain) from T. cruzi. FEMS Microbiol Lett 100:411–416CrossRefPubMedGoogle Scholar
  58. 58.
    Freeze HH, Mierendorf RC, Wunderlich R, Dimond RL (1984) Sulfated oligosaccharides block antibodies to Dictyostelium discoideun acid hydrolases. J Biol Chem 259(16):10641–10643PubMedGoogle Scholar
  59. 59.
    Couto AS, Soprano LL, Landoni M, Pourcelot M, Bultel L, Parente J, Ferrero M, Barbier M, Dussouy C, Esteva M, Kovensky J, Duschak VG (2012) Anionic synthetic sugars mimic the sulfated cruzipain epitope. Central role of 6-SO3-NAcGlc for immune recognition. FEBS J 279(19):3665–3679CrossRefPubMedGoogle Scholar
  60. 60.
    Campetella O, Henriksson J, Aslund L, Frasch ACC, Pettersson U, Cazzulo JJ (1992) The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Mol Biochem Parasitol 50:225–234CrossRefPubMedGoogle Scholar
  61. 61.
    McMillan SJ, Sharma RS, McKenzie EJ, Richards HE, Zhang J, Prescott A, Crocker PR (2013) Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b β2-integrin-dependent signaling. Blood 121(11):2084–2094PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Campanero-Rhodes MA, Childs RA, Kiso M, Komba S, Le Narvor C, Warren J, Otto D, Crocker PR, Feizi T (2006) Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem Biophys Res Commun 344(4):1141–1146CrossRefPubMedGoogle Scholar
  63. 63.
    Redelinghuys P, Antonopoulos A, Liu Y, Campanero-Rhodes MA, McKenzie E, Haslam SM, Dell A, Feizi T, Crocker PR (2011) Early murine T-lymphocyte activation is accompanied by a switch from N-Glycolyl- to N-acetyl-neuraminic acid and generation of ligands for siglec-E. J Biol Chem 286(40):34522–34532PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maximiliano R. Ferrero
    • 1
  • Anja M. Heins
    • 2
  • Luciana L. Soprano
    • 1
  • Diana M. Acosta
    • 1
  • Mónica I. Esteva
    • 1
  • Thomas Jacobs
    • 2
  • Vilma G. Duschak
    • 1
    Email author
  1. 1.Área de Bioquímica de Proteínas y Glicobiología de Parásitos, Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS-MalbránMinisterio de Salud de la NaciónBuenos AiresArgentina
  2. 2.Bernhard Nocht Institute for Tropical MedicineHamburgGermany

Personalised recommendations