Medical Microbiology and Immunology

, Volume 204, Issue 4, pp 471–479 | Cite as

Neutrophil gelatinase-associated lipocalin and innate immune responses to bacterial infections

  • Dimitrios Nasioudis
  • Steven S. WitkinEmail author


Neutrophil gelatinase-associated lipocalin (NGAL), an essential component of the antimicrobial innate immune system, is present in neutrophils and multiple other tissues. It prevents iron acquisition by microorganisms by sequestering iron-loaded bacterial siderophores. NGAL also modulates neutrophil functions. Its production is inducible following Toll-like receptor 4 activation and release of pro-inflammatory cytokines. NGAL is employed clinically in the diagnosis of acute kidney injury and may be useful in general in the differential diagnosis of a bacterial-mediated infectious process. Elevated levels of NGAL have been detected in the blood of patients with bacterial urinary tract infection, community-acquired pneumonia, sepsis, as well as in the cerebrospinal fluid and peritoneal fluid of patients with bacterial meningitis and peritonitis. Some bacteria have developed resistance to NGAL-mediated iron sequestration by production of modified siderophores that are not recognized by NGAL.


Neutrophil gelatinase-associated lipocalin Lipocalin 2 Innate immunity Infectious disease 


Conflict of interest

The authors report no conflict of interest.


  1. 1.
    Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27(2–3):215–237PubMedGoogle Scholar
  2. 2.
    Parrow NL, Fleming RE, Minnick MF (2013) Sequestration and scavenging of iron in infection. Infect Immun 81(10):3503–3514PubMedCentralPubMedGoogle Scholar
  3. 3.
    Akerstrom B, Flower DR, Salier JP (2000) Lipocalins: unity in diversity. Biochim Biophys Acta 1482(1–2):1–8PubMedGoogle Scholar
  4. 4.
    Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268(14):10425–10432PubMedGoogle Scholar
  5. 5.
    Yan L, Borregaard N, Kjeldsen L, Moses MA (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 276(40):37258–37265PubMedGoogle Scholar
  6. 6.
    Xu SY, Carlson M, Engström A, Garcia R, Peterson CG, Venge P (1994) Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils. Scand J Clin Lab Invest 54(5):365–376PubMedGoogle Scholar
  7. 7.
    Kjeldsen L, Bainton DF, Sengeløv H, Borregaard N (1994) Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 83(3):799–807PubMedGoogle Scholar
  8. 8.
    Liu M, Prisco M, Drakas R, Searles D, Baserga R (2005) 24p3 in differentiation of myeloid cells. J Cell Physiol 205(2):302–309PubMedGoogle Scholar
  9. 9.
    Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45(1):17–23PubMedGoogle Scholar
  10. 10.
    Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J et al (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14(10):2534–2543PubMedGoogle Scholar
  11. 11.
    Yoo do Y, Ko SH, Jung J, Kim YJ, Kim JS, Kim JM (2013) Bacteroides fragilis enterotoxin upregulates lipocalin-2 expression in intestinal epithelial cells. Lab Invest 93(4):384–396PubMedGoogle Scholar
  12. 12.
    Alpízar-Alpízar W, Laerum OD, Illemann M, Ramírez JA, Arias A, Malespín-Bendaña W et al (2009) Neutrophil gelatinase-associated lipocalin (NGAL/Lcn2) is upregulated in gastric mucosa infected with Helicobacter pylori. Virchows Arch 455(3):225–233PubMedGoogle Scholar
  13. 13.
    Xu MJ, Feng D, Wu H, Wang H, Chan Y, Kolls J et al (2015) Liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy: a critical role for IL-6/STAT3. Hepatology 61(2):692–702PubMedGoogle Scholar
  14. 14.
    Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917–921PubMedGoogle Scholar
  15. 15.
    Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A et al (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci USA 103(6):1834–1839PubMedCentralPubMedGoogle Scholar
  16. 16.
    Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043PubMedGoogle Scholar
  17. 17.
    Miethke M, Skerra A (2010) Neutrophil gelatinase-associated lipocalin expresses antimicrobial activity by interfering with l-norepinephrine-mediated bacterial iron acquisition. Antimicrob Agents Chemother 54(4):1580–1589PubMedCentralPubMedGoogle Scholar
  18. 18.
    Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579(3):773–777PubMedGoogle Scholar
  19. 19.
    Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123(7):1293–1305PubMedGoogle Scholar
  20. 20.
    Liu Z, Petersen R, Devireddy L (2013) Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections. J Immunol 190(9):4692–4706PubMedCentralPubMedGoogle Scholar
  21. 21.
    Schroll A, Eller K, Feistritzer C, Nairz M, Sonnweber T, Moser PA et al (2012) Lipocalin-2 ameliorates granulocyte functionality. Eur J Immunol 42(12):3346–3357PubMedGoogle Scholar
  22. 22.
    La Manna G, Ghinatti G, Tazzari PL, Alviano F, Ricci F, Capelli I et al (2014) Neutrophil gelatinase-associated lipocalin increases HLA-G(+)/FoxP3(+) T-regulatory cell population in an in vitro model of PBMC. PLoS One 9(2):e89497PubMedCentralPubMedGoogle Scholar
  23. 23.
    Roudkenar MH, Halabian R, Bahmani P, Roushandeh AM, Kuwahara Y, Fukumoto M (2011) Neutrophil gelatinase-associated lipocalin: a new antioxidant that exerts its cytoprotective effect independent on Heme Oxygenase-1. Free Radic Res 45(7):810–819PubMedGoogle Scholar
  24. 24.
    Yang J, Mori K, Li JY, Barasch J (2003) Iron, lipocalin, and kidney epithelia. Am J Physiol Ren Physiol 285(1):F9–F18Google Scholar
  25. 25.
    Cruz DN, Gaiao S, Maisel A, Ronco C, Devarajan P (2012) Neutrophil gelatinase-associated lipocalin as a biomarker of cardiovascular disease: a systematic review. Clin Chem Lab Med 50(9):1533–1545PubMedCentralPubMedGoogle Scholar
  26. 26.
    Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, NGAL Meta-analysis Investigator Group (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54(6):1012–1024PubMedGoogle Scholar
  27. 27.
    Peacock WF 4th, Maisel A, Kim J, Ronco C (2013) Neutrophil gelatinase associated lipocalin in acute kidney injury. Postgrad Med 125(6):82–93PubMedGoogle Scholar
  28. 28.
    Mårtensson J, Bellomo R (2014) The rise and fall of NGAL in acute kidney injury. Blood Purif 37(4):304–310PubMedGoogle Scholar
  29. 29.
    Bolignano D, Donato V, Lacquaniti A, Fazio MR, Bono C, Coppolino G et al (2010) Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett 288(1):10–16PubMedGoogle Scholar
  30. 30.
    Kundu P, Ling TW, Korecka A, Li Y, D’Arienzo R, Bunte RM et al (2014) Absence of intestinal PPARγ aggravates acute infectious colitis in mice through a lipocalin-2-dependent pathway. PLoS Pathog 10(1):e1003887PubMedCentralPubMedGoogle Scholar
  31. 31.
    Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y (2005) Lipocalin 2 functions as a negative regulator of red blood cell production in an autocrine fashion. FASEB J 19(13):1881–1883PubMedGoogle Scholar
  32. 32.
    Miharada K, Hiroyama T, Sudo K, Danjo I, Nagasawa T, Nakamura Y (2008) Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells. J Cell Physiol 215(2):526–537PubMedGoogle Scholar
  33. 33.
    Cowland JB, Sørensen OE, Sehested M, Borregaard N (2003) Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol 171(12):6630–6639PubMedGoogle Scholar
  34. 34.
    Cowland JB, Muta T, Borregaard N (2006) IL-1beta-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-zeta. J Immunol 176(9):5559–5566PubMedGoogle Scholar
  35. 35.
    Kohda A, Yamazaki S, Sumimoto H (2014) DNA element downstream of the κB site in the Lcn2 promoter is required for transcriptional activation by IκBζ and NF-κB p50. Genes Cells 19(8):620–628PubMedGoogle Scholar
  36. 36.
    Karlsen JR, Borregaard N, Cowland JB (2010) Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-alpha is controlled by IkappaB-zeta but neither by C/EBP-beta nor C/EBP-delta. J Biol Chem 285(19):14088–14100PubMedCentralPubMedGoogle Scholar
  37. 37.
    Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, Paixao TA et al (2009) Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5(5):476–486PubMedCentralPubMedGoogle Scholar
  38. 38.
    Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ et al (2009) Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206(2):299–311PubMedCentralPubMedGoogle Scholar
  39. 39.
    Zhao P, Stephens JM (2013) STAT1, NF-κB and ERKs play a role in the induction of lipocalin-2 expression in adipocytes. Mol Metab 2(3):161–170PubMedCentralPubMedGoogle Scholar
  40. 40.
    Marques F, Rodrigues AJ, Sousa JC, Coppola G, Geschwind DH, Sousa N et al (2008) Lipocalin 2 is a choroid plexus acute-phase protein. J Cereb Blood Flow Metab 28(3):450–455PubMedGoogle Scholar
  41. 41.
    Ip JP, Noçon AL, Hofer MJ, Lim SL, Müller M, Campbell IL (2011) Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration. J Neuroinflamm 26(8):124Google Scholar
  42. 42.
    Jin M, Jang E, Suk K (2014) Lipocalin-2 acts as a neuroinflammatogen in lipopolysaccharide-injected mice. Exp Neurobiol 23(2):155–162PubMedCentralPubMedGoogle Scholar
  43. 43.
    Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH et al (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27(3):1176–1190PubMedGoogle Scholar
  44. 44.
    Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH et al (2011) Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 286(51):43855–43870PubMedCentralPubMedGoogle Scholar
  45. 45.
    Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M et al (2013) Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol 191(10):5204–5219PubMedGoogle Scholar
  46. 46.
    Guiddir T, Deghmane AE, Giorgini D, Taha MK (2014) Lipocalin 2 in cerebrospinal fluid as a marker of acute bacterial meningitis. BMC Infect Dis 20(14):276Google Scholar
  47. 47.
    Lippi G, Avanzini P, Calzetti C, Caleffi A, Pipitone S, Musa R et al (2014) The role of neutrophil gelatinase-associated lipocalin (NGAL) in cerebrospinal fluids for screening of acute bacterial meningitis. Clin Lab 60(3):377–381PubMedGoogle Scholar
  48. 48.
    Wu H, Santoni-Rugiu E, Ralfkiaer E, Porse BT, Moser C, Høiby N et al (2010) Lipocalin 2 is protective against E. coli pneumonia. Respir Res 15(11):96Google Scholar
  49. 49.
    Gupta N, Krasnodembskaya A, Kapetanaki M, Mouded M, Tan X, Serikov V et al (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67(6):533–539PubMedCentralPubMedGoogle Scholar
  50. 50.
    Robinson KM, McHugh KJ, Mandalapu S, Clay ME, Lee B, Scheller EV et al (2014) Influenza A virus exacerbates Staphylococcus aureus pneumonia in mice by attenuating antimicrobial peptide production. J Infect Dis 209(6):865–875PubMedCentralPubMedGoogle Scholar
  51. 51.
    Bellmann-Weiler R, Schroll A, Engl S, Nairz M, Talasz H, Seifert M et al (2013) Neutrophil gelatinase-associated lipocalin and interleukin-10 regulate intramacrophage Chlamydia pneumoniae replication by modulating intracellular iron homeostasis. Immunobiology 218(7):969–978PubMedCentralPubMedGoogle Scholar
  52. 52.
    Bachman MA, Miller VL, Weiser JN (2009) Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog 5(10):e1000622PubMedCentralPubMedGoogle Scholar
  53. 53.
    Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F, Dozois CM et al (2011) Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 79(8):3309–3316PubMedCentralPubMedGoogle Scholar
  54. 54.
    Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN (2012) Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio 3(6). doi: 10.1128/mBio.00224-11
  55. 55.
    Peek ME, Bhatnagar A, McCarty NA, Zughaier SM (2012) Pyoverdine, the major siderophore in Pseudomonas aeruginosa, evades NGAL recognition. Interdiscip Perspect Infect Dis 2012:843509PubMedCentralPubMedGoogle Scholar
  56. 56.
    Zughaier SM, Tangpricha V, Leong T, Stecenko AA, McCarty NA (2013) Peripheral monocytes derived from patients with cystic fibrosis and healthy donors secrete NGAL in response to Pseudomonas aeruginosa infection. J Investig Med 61(6):1018–1025PubMedGoogle Scholar
  57. 57.
    Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb) 84(1–2):110–130Google Scholar
  58. 58.
    Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK (2005) Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13(1):29–41PubMedGoogle Scholar
  59. 59.
    Hoette TM, Clifton MC, Zawadzka AM, Holmes MA, Strong RK, Raymond KN (2011) Immune interference in Mycobacterium tuberculosis intracellular iron acquisition through siderocalin recognition of carboxymycobactins. ACS Chem Biol 6(12):1327–1331PubMedCentralPubMedGoogle Scholar
  60. 60.
    Halaas O, Steigedal M, Haug M, Awuh JA, Ryan L, Brech A et al (2010) Intracellular Mycobacterium avium intersect transferrin in the Rab11(+) recycling endocytic pathway and avoid lipocalin 2 trafficking to the lysosomal pathway. J Infect Dis 201(5):783–792PubMedCentralPubMedGoogle Scholar
  61. 61.
    Johnson EE, Srikanth CV, Sandgren A, Harrington L, Trebicka E, Wang L et al (2010) Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages. FEMS Immunol Med Microbiol 58(1):138–145PubMedCentralPubMedGoogle Scholar
  62. 62.
    Saiga H, Nishimura J, Kuwata H, Okuyama M, Matsumoto S, Sato S et al (2008) Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. J Immunol 181(12):8521–8527PubMedGoogle Scholar
  63. 63.
    Guglani L, Gopal R, Rangel-Moreno J, Junecko BF, Lin Y, Berger T et al (2012) Lipocalin 2 regulates inflammation during pulmonary mycobacterial infections. PLoS One 7(11):e50052PubMedCentralPubMedGoogle Scholar
  64. 64.
    Yeh YH, Chang JL, Hsiao PC, Tsao SM, Lin CH, Kao SJ et al (2013) Circulating level of lipocalin 2 as a predictor of severity in patients with community-acquired pneumonia. J Clin Lab Anal 27(4):253–260PubMedGoogle Scholar
  65. 65.
    Axelsson L, Bergenfeldt M, Ohlsson K (1995) Studies of the release and turnover of a human neutrophil lipocalin. Scand J Clin Lab Invest 55(7):577–588PubMedGoogle Scholar
  66. 66.
    Leung JC, Lam MF, Tang SC, Chan LY, Tam KY, Yip TP et al (2009) Roles of neutrophil gelatinase-associated lipocalin in continuous ambulatory peritoneal dialysis-related peritonitis. J Clin Immunol 29(3):365–378PubMedGoogle Scholar
  67. 67.
    Martino FK, Filippi I, Giavarina D, Kaushik M, Rodighiero MP, Crepaldi C et al (2012) Neutrophil gelatinase-associated lipocalin in the early diagnosis of peritonitis: the case of neutrophil gelatinase-associated lipocalin. Contrib Nephrol 178:258–263PubMedGoogle Scholar
  68. 68.
    Lippi G, Caleffi A, Pipitone S, Elia G, Ngah A, Aloe R et al (2013) Assessment of neutrophil gelatinase-associated lipocalin and lactate dehydrogenase in peritoneal fluids for the screening of bacterial peritonitis. Clin Chim Acta 15(418):59–62Google Scholar
  69. 69.
    Decavele AS, Dhondt L, De Buyzere ML, Delanghe JR (2011) Increased urinary neutrophil gelatinase associated lipocalin in urinary tract infections and leukocyturia. Clin Chem Lab Med 49(6):999–1003PubMedGoogle Scholar
  70. 70.
    Paragas N, Kulkarni R, Werth M, Schmidt-Ott KM, Forster C, Deng R et al (2014) α-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 124(7):2963–2976PubMedCentralPubMedGoogle Scholar
  71. 71.
    Lee SJ, Borsting E, Declèves AE, Singh P, Cunard R (2012) Podocytes express IL-6 and lipocalin 2/neutrophil gelatinase-associated lipocalin in lipopolysaccharide-induced acute glomerular injury. Nephron Exp Nephrol 121(3–4):e86–e96PubMedCentralPubMedGoogle Scholar
  72. 72.
    Ichino M, Kuroyanagi Y, Kusaka M, Mori T, Ishikawa K, Shiroki R et al (2009) Increased urinary neutrophil gelatinase associated lipocalin levels in a rat model of upper urinary tract infection. J Urol 181(5):2326–2331PubMedGoogle Scholar
  73. 73.
    Urbschat A, Obermüller N, Paulus P, Reissig M, Hadji P, Hofmann R et al (2014) Upper and lower urinary tract infections can be detected early but not be discriminated by urinary NGAL in adults. Int Urol Nephrol 46(12):2243–2249PubMedGoogle Scholar
  74. 74.
    Yilmaz A, Sevketoglu E, Gedikbasi A, Karyagar S, Kiyak A, Mulazimoglu M et al (2009) Early prediction of urinary tract infection with urinary neutrophil gelatinase associated lipocalin. Pediatr Nephrol 24(12):2387–2392PubMedGoogle Scholar
  75. 75.
    Hatipoglu S, Sevketoglu E, Gedikbasi A, Yilmaz A, Kiyak A, Mulazimoglu M et al (2011) Urinary MMP-9/NGAL complex in children with acute cystitis. Pediatr Nephrol 26(8):1263–1268PubMedGoogle Scholar
  76. 76.
    Lee HE, Kim DK, Kang HK, Park K (2015) The diagnosis of febrile urinary tract infection in children may be facilitated by urinary biomarkers. Pediatr Nephrol 30(1):123–130PubMedGoogle Scholar
  77. 77.
    Seo WH, Nam SW, Lee EH, Je BK, Yim HE, Choi BM (2014) A rapid plasma neutrophil gelatinase-associated lipocalin assay for diagnosis of acute pyelonephritis in infants with acute febrile urinary tract infections: a preliminary study. Eur J Pediatr 173(2):229–232PubMedGoogle Scholar
  78. 78.
    Kim BH, Yu N, Kim HR, Yun KW, Lim IS, Kim TH et al (2014) Evaluation of the optimal neutrophil gelatinase-associated lipocalin value as a screening biomarker for urinary tract infections in children. Ann Lab Med 34(5):354–359PubMedCentralPubMedGoogle Scholar
  79. 79.
    Kienzl-Wagner K, Moschen AR, Geiger S, Bichler A, Aigner F, Brandacher G et al (2014) The role of lipocalin-2 in liver regeneration. Liver Int. doi: 10.1111/liv.12634 PubMedGoogle Scholar
  80. 80.
    Borkham-Kamphorst E, van de Leur E, Zimmermann HW, Karlmark KR, Tihaa L, Haas U et al (2013) Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis. Biochim Biophys Acta 1832(5):660–673PubMedGoogle Scholar
  81. 81.
    Srinivasan G, Aitken JD, Zhang B, Carvalho FA, Chassaing B, Shashidharamurthy R et al (2012) Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J Immunol 189(4):1911–1919PubMedCentralPubMedGoogle Scholar
  82. 82.
    Sunil VR, Patel KJ, Nilsen-Hamilton M, Heck DE, Laskin JD, Laskin DL (2007) Acute endotoxemia is associated with upregulation of lipocalin 24p3/Lcn2 in lung and liver. Exp Mol Pathol 83(2):177–187PubMedCentralPubMedGoogle Scholar
  83. 83.
    Lentini P, de Cal M, Clementi A, D’Angelo A, Ronco C (2012) Sepsis and AKI in ICU patients: the role of plasma biomarkers. Crit Care Res Pract 2012:856401PubMedCentralPubMedGoogle Scholar
  84. 84.
    Hur M, Kim H, Lee S, Cristofano F, Magrini L, Marino R et al (2014) Diagnostic and prognostic utilities of multimarkers approach using procalcitonin, B-type natriuretic peptide, and neutrophil gelatinase-associated lipocalin in critically ill patients with suspected sepsis. BMC Infect Dis 24(14):224Google Scholar
  85. 85.
    Smertka M, Wroblewska J, Suchojad A, Majcherczyk M, Jadamus-Niebroj D, Owsianka-Podlesny T et al (2014) Serum and urinary NGAL in septic newborns. Biomed Res Int 2014:717318PubMedCentralPubMedGoogle Scholar
  86. 86.
    Mårtensson J, Bell M, Xu S, Bottai M, Ravn B, Venge P et al (2013) Association of plasma neutrophil gelatinase-associated lipocalin (NGAL) with sepsis and acute kidney dysfunction. Biomarkers 18(4):349–356PubMedGoogle Scholar
  87. 87.
    Ginde AA, Blatchford PJ, Trzeciak S, Hollander JE, Birkhahn R, Otero R et al (2014) Age-related differences in biomarkers of acute inflammation during hospitalization for sepsis. Shock 42(2):99–107PubMedGoogle Scholar
  88. 88.
    Bagshaw SM, Bennett M, Haase M, Haase-Fielitz A, Egi M, Morimatsu H et al (2010) Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med 36(3):452–461PubMedGoogle Scholar
  89. 89.
    Zarbock A, Gomez H, Kellum JA (2014) Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care 20(6):588–595PubMedGoogle Scholar
  90. 90.
    Ferreira MC, Whibley N, Mamo AJ, Siebenlist U, Chan YR, Gaffen SL (2014) Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis. Infect Immun 82(3):1030–1035PubMedCentralPubMedGoogle Scholar
  91. 91.
    Caza M, Kronstad JW (2013) Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 19(3):80Google Scholar
  92. 92.
    Beghini J, Giraldo PC, Linhares IM, Ledger WJ, Witkin SS (2015) Neutrophil gelatinase-associated lipocalin concentration in vaginal fluid: relation to bacterial vaginosis and vulvovaginal candidiasis. Reprod Sci (in press)Google Scholar
  93. 93.
    Tsai HT, Su PH, Lee TH, Tee YT, Lin LY, Yang SF et al (2011) Significant elevation and correlation of plasma neutrophil gelatinase associated lipocalin and its complex with matrix metalloproteinase-9 in patients with pelvic inflammatory disease. Clin Chim Acta 412(13–14):1252–1256PubMedGoogle Scholar
  94. 94.
    Tee YT, Wang PH, Yang SF, Tsai HT, Lee SK, Ko JL et al (2014) Correlation of plasma osteopontin and neutrophil gelatinase-associated lipocalin levels with the severity and clinical outcome of pelvic inflammatory disease. Taiwan J Obstet Gynecol 53(2):158–161PubMedGoogle Scholar
  95. 95.
    Tadesse S, Luo G, Park JS, Kim BJ, Snegovskikh VV, Zheng T et al (2011) Intra-amniotic infection upregulates neutrophil gelatinase-associated lipocalin (NGAL) expression at the maternal–fetal interface at term: implications for infection-related preterm birth. Reprod Sci 18:713–722PubMedCentralPubMedGoogle Scholar
  96. 96.
    D’Anna R, Baviera G, Giordano D et al (2010) Neutrophil gelatinase-associated lipocalin serum evaluation through normal pregnancy and in pregnancies complicated by preeclampsia. Acta Obstet Gynecol Scand 89:275–278PubMedGoogle Scholar
  97. 97.
    D’Anna R, Baviera G, Corrado F, Giordano D, Recupero S, Di Benedetto A (2009) First trimester serum neutrophil gelatinase-associated lipocalin in gestational diabetes. Diabet Med 26:1293–1295PubMedGoogle Scholar
  98. 98.
    Xu SY, Pauksen K, Venge P (1995) Serum measurements of human neutrophil lipocalin (HNL) discriminate between acute bacterial and viral infections. Scand J Clin Lab Invest 55(2):125–131PubMedGoogle Scholar
  99. 99.
    Noçon AL, Ip JP, Terry R, Lim SL, Getts DR, Müller M et al (2014) The bacteriostatic protein lipocalin 2 is induced in the central nervous system of mice with west Nile virus encephalitis. J Virol 88(1):679–689PubMedCentralPubMedGoogle Scholar
  100. 100.
    Hraba-Renevey S, Türler H, Kress M, Salomon C, Weil R (1989) SV40-induced expression of mouse gene 24p3 involves a post-transcriptional mechanism. Oncogene 4(5):601–608PubMedGoogle Scholar
  101. 101.
    Vijay-Kumar M, Gentsch JR, Kaiser WJ, Borregaard N, Offermann MK, Neish AS et al (2005) Protein kinase R mediates intestinal epithelial gene remodeling in response to double-stranded RNA and live rotavirus. J Immunol 174(10):6322–6331PubMedGoogle Scholar
  102. 102.
    Syrjänen S, Naud P, Sarian L, Derchain S, Roteli-Martins C, Tatti S et al (2010) Up-regulation of lipocalin 2 is associated with high-risk human papillomavirus and grade of cervical lesion at baseline but does not predict outcomes of infections or incident cervical intraepithelial neoplasia. Am J Clin Pathol 134(1):50–59PubMedGoogle Scholar
  103. 103.
    Akgül B, Bauer B, Zigrino P, Storey A, Mauch C, Pfister H (2011) Upregulation of lipocalin-2 in human papillomavirus-positive keratinocytes and cutaneous squamous cell carcinomas. J Gen Virol 92(Pt 2):395–401PubMedGoogle Scholar
  104. 104.
    Landrø L, Damås JK, Flo TH, Heggelund L, Ueland T, Tjønnfjord GE et al (2008) Decreased serum lipocalin-2 levels in human immunodeficiency virus-infected patients: increase during highly active anti-retroviral therapy. Clin Exp Immunol 152(1):57–63PubMedCentralPubMedGoogle Scholar
  105. 105.
    Sola-Del Valle DA, Mohan S, Cheng JT, Paragas NA, Sise ME, D’Agati VD et al (2011) Urinary NGAL is a useful clinical biomarker of HIV-associated nephropathy. Nephrol Dial Transpl 26(7):2387–2390Google Scholar
  106. 106.
    Nelson AL, Barasch JM, Bunte RM, Weiser JN (2005) Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell Microbiol 7(10):1404–1417PubMedGoogle Scholar
  107. 107.
    Abergel RJ, Wilson MK, Arceneaux JE, Hoette TM, Strong RK, Byers BR et al (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci USA 103(49):18499–18503PubMedCentralPubMedGoogle Scholar
  108. 108.
    Allred BE, Correnti C, Clifton MC, Strong RK, Raymond KN (2013) Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae. ACS Chem Biol 8(9):1882–1887PubMedCentralPubMedGoogle Scholar
  109. 109.
    Fischbach MA, Lin H, Liu DR, Walsh CT (2005) In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci USA 102(3):571–576PubMedCentralPubMedGoogle Scholar
  110. 110.
    Abergel RJ, Moore EG, Strong RK, Raymond KN (2006) Microbial evasion of the immune system: structural modifications of enterobactin impair siderocalin recognition. J Am Chem Soc 128(34):10998–10999PubMedCentralPubMedGoogle Scholar
  111. 111.
    Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR et al (2006) The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103(44):16502–16507PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Immunology and Infectious Diseases, Department of Obstetrics and GynecologyWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations