Medical Microbiology and Immunology

, Volume 204, Issue 1, pp 5–10 | Cite as

Natural history of chronic hepatitis B virus infection

Review
Part of the following topical collections:
  1. Therapeutic vaccination in chronic hepatitis B - approaches, problems, and new perspectives

Abstract

Hepatitis B virus infection represents a major global health problem. Currently, there are more than 240 million chronically infected people worldwide. The development of chronic hepatitis B virus-mediated liver disease may lead to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma. Recently, the discovery of the viral entry receptor sodium taurocholate cotransporting polypeptide has facilitated new approaches for a better understanding of viral physiopathology. Hopefully, these novel insights may give rise to the development of more effective antiviral therapy concepts during the next years. In this review, we will discuss the natural history of hepatitis B virus infection including the viral biology, the clinical course of infection and the role of the immune response.

Keywords

Hepatitis B virus Natural history Virology Immune response 

References

  1. 1.
    Suh A, Brosius J, Schmitz J, Kriegs JO (2013) The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat Commun 4:1791PubMedCrossRefGoogle Scholar
  2. 2.
    Gilbert C, Feschotte C (2010) Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol 8(9):e1000495PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Locarnini S, Littlejohn M, Aziz MN, Yuen L (2013) Possible origins and evolution of the hepatitis B virus (HBV). Semin Cancer Biol 23(6 Pt B):561–575PubMedCrossRefGoogle Scholar
  4. 4.
    Paraskevis D, Magiorkinis G, Magiorkinis E, Ho SY, Belshaw R et al (2013) Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology 57(3):908–916PubMedCrossRefGoogle Scholar
  5. 5.
    Kahila Bar-Gal G, Kim MJ, Klein A, Shin DH, Oh CS et al (2012) Tracing hepatitis B virus to the 16th century in a Korean mummy. Hepatology 56(5):1671–1680PubMedCrossRefGoogle Scholar
  6. 6.
    World Health Organization (2014) Hepatitis B. Fact sheet N°204, updated July 2014. http://www.who.int/mediacentre/factsheets/fs204/en/. Accessed 6 September 2014
  7. 7.
    Dane DS, Cameron CH, Briggs M (1970) Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 1(7649):695–698PubMedCrossRefGoogle Scholar
  8. 8.
    Ganem D (1991) Assembly of hepadnaviral virions and subviral particles. Curr Top Microbiol Immunol 168:61–83PubMedGoogle Scholar
  9. 9.
    Patient R, Hourioux C, Roingeard P (2009) Morphogenesis of hepatitis B virus and its subviral envelope particles. Cell Microbiol 11(11):1561–1570PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Urban S, Schulze A, Dandri M, Petersen J (2010) The replication cycle of hepatitis B virus. J Hepatol 52(2):282–284PubMedCrossRefGoogle Scholar
  11. 11.
    Seeger C, Mason WS (2000) Hepatitis B virus biology. Microbiol Mol Biol Rev 64(1):51–68PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Takahashi K, Machida A, Funatsu G, Nomura M, Usuda S et al (1983) Immunochemical structure of hepatitis B e antigen in the serum. J Immunol 130(6):2903–2907PubMedGoogle Scholar
  13. 13.
    Chang C, Enders G, Sprengel R, Peters N, Varmus HE et al (1987) Expression of the precore region of an avian hepatitis B virus is not required for viral replication. J Virol 61(10):3322–3325PubMedCentralPubMedGoogle Scholar
  14. 14.
    Chen HS, Kew MC, Hornbuckle WE, Tennant BC, Cote PJ et al (1992) The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host. J Virol 66(9):5682–5684PubMedCentralPubMedGoogle Scholar
  15. 15.
    Okamoto H, Yotsumoto S, Akahane Y, Yamanaka T, Miyazaki Y et al (1990) Hepatitis B viruses with precore region defects prevail in persistently infected hosts along with seroconversion to the antibody against e antigen. J Virol 64(3):1298–1303PubMedCentralPubMedGoogle Scholar
  16. 16.
    Milich D, Liang TJ (2003) Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 38(5):1075–1086PubMedCrossRefGoogle Scholar
  17. 17.
    Chu C, Yeh C, Lee C, Sheen I, Liaw Y (2002) Precore stop mutant in HBeAg-positive patients with chronic hepatitis B: clinical characteristics and correlation with the course of HBeAg-to-anti-HBe seroconversion. J Clin Microbiol 40(1):16–21PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Zoulim F, Saputelli J, Seeger C (1994) Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol 68(3):2026–2030PubMedCentralPubMedGoogle Scholar
  19. 19.
    Jazayeri SM, Basuni AA, Sran N, Gish R, Cooksley G et al (2004) HBV core sequence: definition of genotype-specific variability and correlation with geographical origin. J Viral Hepat 11(6):488–501PubMedCrossRefGoogle Scholar
  20. 20.
    Norder H, Hammas B, Lee SD, Bile K, Couroucé AM et al (1993) Genetic relatedness of hepatitis B viral strains of diverse geographical origin and natural variations in the primary structure of the surface antigen. J Gen Virol 74(Pt 7):1341–1348PubMedCrossRefGoogle Scholar
  21. 21.
    Norder H, Couroucé A, Coursaget P, Echevarria JM, Lee S et al (2004) Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology 47(6):289–309PubMedCrossRefGoogle Scholar
  22. 22.
    Flink HJ, van Zonneveld M, Hansen BE, de Man RA, Schalm SW et al (2006) Treatment with Peg-interferon alpha-2b for HBeAg-positive chronic hepatitis B: HBsAg loss is associated with HBV genotype. Am J Gastroenterol 101(2):297–303PubMedCrossRefGoogle Scholar
  23. 23.
    Wiegand J, Hasenclever D, Tillmann HL (2008) Should treatment of hepatitis B depend on hepatitis B virus genotypes? A hypothesis generated from an explorative analysis of published evidence. Antivir Ther (Lond) 13(2):211–220Google Scholar
  24. 24.
    Schulze A, Gripon P, Urban S (2007) Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46(6):1759–1768PubMedCrossRefGoogle Scholar
  25. 25.
    Yan H, Zhong G, Xu G, He W, Jing Z et al (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1:e00049PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C et al (2014) Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146(4):1070–1083PubMedCrossRefGoogle Scholar
  27. 27.
    Stieger B, Hagenbuch B, Landmann L, Höchli M, Schroeder A et al (1994) In situ localization of the hepatocytic Na+/Taurocholate cotransporting polypeptide in rat liver. Gastroenterology 107(6):1781–1787PubMedGoogle Scholar
  28. 28.
    Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93(3):1326–1331PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Stieger B (2011) The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 201:205–259PubMedCrossRefGoogle Scholar
  30. 30.
    Kann M, Schmitz A, Rabe B (2007) Intracellular transport of hepatitis B virus. World J Gastroenterol 13(1):39–47PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Grimm D, Thimme R, Blum HE (2011) HBV life cycle and novel drug targets. Hepatol Int 5(2):644–653PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Pollack JR, Ganem D (1994) Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis. J Virol 68(9):5579–5587PubMedCentralPubMedGoogle Scholar
  33. 33.
    Tuttleman JS, Pourcel C, Summers J (1986) Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47(3):451–460PubMedCrossRefGoogle Scholar
  34. 34.
    Ganem D, Prince AM (2004) Hepatitis B virus infection—natural history and clinical consequences. N Engl J Med 350(11):1118–1129PubMedCrossRefGoogle Scholar
  35. 35.
    Asabe S, Wieland SF, Chattopadhyay PK, Roederer M, Engle RE et al (2009) The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol 83(19):9652–9662PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ribeiro RM, Lo A, Perelson AS (2002) Dynamics of hepatitis B virus infection. Microbes Infect 4(8):829–835PubMedCrossRefGoogle Scholar
  37. 37.
    Kajino K, Jilbert AR, Saputelli J, Aldrich CE, Cullen J et al (1994) Woodchuck hepatitis virus infections: very rapid recovery after a prolonged viremia and infection of virtually every hepatocyte. J Virol 68(9):5792–5803PubMedCentralPubMedGoogle Scholar
  38. 38.
    Wieland S, Thimme R, Purcell RH, Chisari FV (2004) Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci USA 101(17):6669–6674PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Dunn C, Peppa D, Khanna P, Nebbia G, Jones M et al (2009) Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 137(4):1289–1300PubMedCrossRefGoogle Scholar
  40. 40.
    Chisari FV, Isogawa M, Wieland SF (2010) Pathogenesis of hepatitis B virus infection. Pathol Biol 58(4):258–266PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    McMahon BJ (2009) The natural history of chronic hepatitis B virus infection. Hepatology 49(5 Suppl):S45–S55PubMedCrossRefGoogle Scholar
  42. 42.
    Hoofnagle JH, Doo E, Liang TJ, Fleischer R, Lok AS (2007) Management of hepatitis B: summary of a clinical research workshop. Hepatology 45(4):1056–1075PubMedCrossRefGoogle Scholar
  43. 43.
    Yim HJ, Lok AS (2006) Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. Hepatology 43(2 Suppl 1):S173–S181PubMedCrossRefGoogle Scholar
  44. 44.
    McMahon BJ (2005) Epidemiology and natural history of hepatitis B. Semin Liver Dis 25(Suppl 1):3–8PubMedCrossRefGoogle Scholar
  45. 45.
    Hui C, Leung N, Yuen S, Zhang H, Leung K et al (2007) Natural history and disease progression in Chinese chronic hepatitis B patients in immune-tolerant phase. Hepatology 46(2):395–401PubMedCrossRefGoogle Scholar
  46. 46.
    Lok AS, Lai CL, Wu PC, Leung EK, Lam TS (1987) Spontaneous hepatitis B e antigen to antibody seroconversion and reversion in Chinese patients with chronic hepatitis B virus infection. Gastroenterology 92(6):1839–1843PubMedGoogle Scholar
  47. 47.
    Manno M, Cammà C, Schepis F, Bassi F, Gelmini R et al (2004) Natural history of chronic HBV carriers in northern Italy: morbidity and mortality after 30 years. Gastroenterology 127(3):756–763PubMedCrossRefGoogle Scholar
  48. 48.
    McMahon BJ, Holck P, Bulkow L, Snowball M (2001) Serologic and clinical outcomes of 1536 Alaska Natives chronically infected with hepatitis B virus. Ann Intern Med 135(9):759–768PubMedCrossRefGoogle Scholar
  49. 49.
    Shouval D, Shibolet O (2013) Immunosuppression and HBV reactivation. Semin Liver Dis 33(2):167–177PubMedCrossRefGoogle Scholar
  50. 50.
    Raimondo G, Allain J, Brunetto MR, Buendia M, Chen D et al (2008) Statements from the Taormina expert meeting on occult hepatitis B virus infection. J Hepatol 49(4):652–657PubMedCrossRefGoogle Scholar
  51. 51.
    Pollicino T, Raimondo G (2014) Occult hepatitis B infection. J Hepatol 61(3):688–689PubMedCrossRefGoogle Scholar
  52. 52.
    Gerlich WH, Bremer C, Saniewski M, Schüttler CG, Wend UC et al (2010) Occult hepatitis B virus infection: detection and significance. Dig Dis 28(1):116–125PubMedCrossRefGoogle Scholar
  53. 53.
    Sagnelli E, Pisaturo M, Martini S, Filippini P, Sagnelli C et al (2014) Clinical impact of occult hepatitis B virus infection in immunosuppressed patients. World J Hepatol 6(6):384–393PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Beasley RP (1988) Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61(10):1942–1956PubMedCrossRefGoogle Scholar
  55. 55.
    Fattovich G, Giustina G, Schalm SW, Hadziyannis S, Sanchez-Tapias J et al (1995) Occurrence of hepatocellular carcinoma and decompensation in western European patients with cirrhosis type B. The EUROHEP study group on hepatitis B virus and cirrhosis. Hepatology 21(1):77–82PubMedGoogle Scholar
  56. 56.
    Moss B, Smith GL, Gerin JL, Purcell RH (1984) Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature 311(5981):67–69PubMedCrossRefGoogle Scholar
  57. 57.
    Chen HL, Chang MH, Ni YH, Hsu HY, Lee PI et al (1996) Seroepidemiology of hepatitis B virus infection in children: ten years of mass vaccination in Taiwan. JAMA 276(11):906–908PubMedCrossRefGoogle Scholar
  58. 58.
    Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC et al (1997) Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan childhood hepatoma study group. N Engl J Med 336(26):1855–1859PubMedCrossRefGoogle Scholar
  59. 59.
    Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA et al (2003) CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 77(1):68–76PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Webster GJ, Reignat S, Maini MK, Whalley SA, Ogg GS et al (2000) Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32(5):1117–1124PubMedCrossRefGoogle Scholar
  61. 61.
    Ferrari C, Penna A, Bertoletti A, Valli A, Antoni AD et al (1990) Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J Immunol 145(10):3442–3449PubMedGoogle Scholar
  62. 62.
    Rehermann B, Fowler P, Sidney J, Person J, Redeker A et al (1995) The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med 181(3):1047–1058PubMedCrossRefGoogle Scholar
  63. 63.
    Jung MC, Hartmann B, Gerlach JT, Diepolder H, Gruber R et al (1999) Virus-specific lymphokine production differs quantitatively but not qualitatively in acute and chronic hepatitis B infection. Virology 261(2):165–172PubMedCrossRefGoogle Scholar
  64. 64.
    Webster GJM, Reignat S, Brown D, Ogg GS, Jones L et al (2004) Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B Virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol 78(11):5707–5719PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Wherry EJ (2011) T cell exhaustion. Nat Immunol 131(6):492–499CrossRefGoogle Scholar
  66. 66.
    Sauce D, Almeida JR, Larsen M, Haro L, Autran B et al (2007) PD-1 expression on human CD8 T cells depends on both state of differentiation and activation status. AIDS 21(15):2005–2013PubMedCrossRefGoogle Scholar
  67. 67.
    Bengsch B, Martin B, Thimme R (2014) Restoration of HBV-specific CD8+ T-cell function by PD-1 blockade in inactive carrier patients is linked to T-cell differentiation. J Hepatol 61(6):1212–1219PubMedCrossRefGoogle Scholar
  68. 68.
    Blackburn SD, Wherry EJ (2007) IL-10, T cell exhaustion and viral persistence. Trends Microbiol 15(4):143–146PubMedCrossRefGoogle Scholar
  69. 69.
    Akcam FZ, Tigli A, Kaya O, Ciris M, Vural H (2012) Cytokine levels and histopathology in chronic hepatitis B and chronic hepatitis C. J Interferon Cytokine Res 32(12):570–574PubMedCrossRefGoogle Scholar
  70. 70.
    Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB et al (2006) Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12(11):1301–1309PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM et al (2006) Resolution of a chronic viral infection after interleukin-10 receptor blockade. J Exp Med 203(11):2461–2472PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Das A, Hoare M, Davies N, Lopes AR, Dunn C et al (2008) Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J Exp Med 205(9):2111–2124PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Bertoletti A, Ferrari C (2012) Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut 61(12):1754–1764PubMedCrossRefGoogle Scholar
  74. 74.
    Yang PL, Althage A, Chung J, Maier H, Wieland S et al (2010) Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci USA 107(2):798–802PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Peppa D, Gill US, Reynolds G, Easom NJW, Pallett LJ et al (2013) Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 210(1):99–114PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA (2003) Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 4(2):175–181PubMedCrossRefGoogle Scholar
  77. 77.
    Krueger PD, Lassen MG, Qiao H, Hahn YS (2011) Regulation of NK cell repertoire and function in the liver. Crit Rev Immunol 31(1):43–52PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Lassen MG, Lukens JR, Dolina JS, Brown MG, Hahn YS (2010) Intrahepatic IL-10 maintains NKG2A+Ly49-liver NK cells in a functionally hyporesponsive state. J Immunol 184(5):2693–2701PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN et al (2008) TLR-dependent cross talk between human Kupffer cells and NK cells. J Exp Med 205(1):233–244PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Oliviero B, Varchetta S, Paudice E, Michelone G, Zaramella M et al (2009) Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 137(3):1151–1160 1160.e1–7PubMedCrossRefGoogle Scholar
  81. 81.
    Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A et al (2010) Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog 6(12):e1001227PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Shi CC, Tjwa ETTL, Biesta PJ, Boonstra A, Xie Q et al (2012) Hepatitis B virus suppresses the functional interaction between natural killer cells and plasmacytoid dendritic cells. J Viral Hepat 19(2):e26–e33PubMedCrossRefGoogle Scholar
  83. 83.
    Maini MK, Peppa D (2013) NK cells: a double-edged sword in chronic hepatitis B virus infection. Front Immunol 4:57PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Radaeva S, Sun R, Jaruga B, van Nguyen T, Tian Z et al (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130(2):435–452PubMedCrossRefGoogle Scholar
  85. 85.
    Lang PA, Lang KS, Xu HC, Grusdat M, Parish IA et al (2012) Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci USA 109(4):1210–1215PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Waggoner SN, Cornberg M, Selin LK, Welsh RM (2012) Natural killer cells act as rheostats modulating antiviral T cells. Nature 481(7381):394–398Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Medicine IIUniversity Hospital of FreiburgFreiburgGermany

Personalised recommendations