Advertisement

Medical Microbiology and Immunology

, Volume 204, Issue 4, pp 527–538 | Cite as

Influence of a probiotic Lactobacillus casei strain on the colonisation with potential pathogenic streptococci and Staphylococcus aureus in the nasopharyngeal space of healthy men with a low baseline NK cell activity

  • Charles M. A. P. FranzEmail author
  • Melanie Huch
  • Stephanie Seifert
  • Jeannette Kramlich
  • Achim Bub
  • Gyu-Sung Cho
  • Bernhard Watzl
Original Investigation

Abstract

The effect of a daily intake of the probiotic strain Lactobacillus casei Shirota (LcS) on the colonisation of pathogens, specifically streptococci and Staphylococcus aureus, in the nose and throat of healthy human volunteers with low natural killer cell activity, was investigated in a randomised and controlled intervention study. The study consisted of a 2-week run-in phase, followed by a 4-week intervention phase. The probiotic treatment group received a fermented milk drink with LcS, while the placebo group received an equally composed milk drink without the probiotic additive. To isolate potential pathogenic streptococci and Staph. aureus, samples from the pharynx, as well as of both middle nasal meati, were taken, once after the run-in phase and once at the end of the intervention phase. Isolated bacteria were identified as either Staph. aureus and α- or β-haemolytic streptococci in a polyphasic taxonomical approach based on phenotypic tests, amplified ribosomal DNA restriction analysis genotyping, and 16S rRNA gene sequencing of representative strains. Salivary secretory immunoglobulin A (SIgA) was used as marker of protective mucosal immunity to evaluate whether LcS treatment influenced SIgA production. No statistically significant effect could be determined for intervention with LcS on the incidence of Staph. aureus in the nasal space, Staph. aureus in the pharyngeal space or for β-haemolytic streptococci and Streptococcus pneumoniae in the pharyngeal space. Thus, the intervention did not influence the nasopharyngeal colonisation with Gram-positive potential pathogens. Production of salivary SIgA as a potential means of microbiota modulation was also not affected.

Keywords

Probiotic Immunomodulation Secretory IgA Streptococcus Staphylococcus Throat colonisation 

Notes

Acknowledgments

This work was supported in part by Yakult Honsha Co., Ltd., Tokyo, Japan. The authors thank M. Brossart, E. Hoch, U. Stadler-Prayle, L. Uhlmann, and I. Specht for their excellent technical assistance.

Conflict of interest

Stephanie Seifert was supported in part by a grant of Yakult Honsha Co., Ltd., Tokyo, Japan. Melanie Huch, Jeannette Kramlich, Achim Bub, Gyu-Sung Cho, Bernhard Watzl, and Charles M.A.P. Franz declare that they have no conflict of interest.

References

  1. 1.
    FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada, 30. April 1. Mai 2002Google Scholar
  2. 2.
    Donnet-Hughes A, Rochat F, Serrant P, Aeschlimann JM, Schiffrin EJ (1999) Modulation of nonspecific mechanisms of defense by lactic acid bacteria: effective dose. J Dairy Sci 82(5):863–869PubMedCrossRefGoogle Scholar
  3. 3.
    Nagao F, Nakayama M, Muto T, Okumura K (2000) Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Biosci Biotechnol Biochem 64(12):2706–2708PubMedCrossRefGoogle Scholar
  4. 4.
    Gill HS, Cross ML, Rutherfurd KJ, Gopal PK (2001) Dietary probiotic supplementation to enhance cellular immunity in the elderly. Br J Biomed Sci 58(2):94–96PubMedGoogle Scholar
  5. 5.
    Parra D, De Morentin BM, Cobo JM, Mateos A, Martinez JA (2004) Monocyte function in healthy middle-aged people receiving fermented milk containing Lactobacillus casei. J Nutr Health Aging 8(4):208–211PubMedGoogle Scholar
  6. 6.
    Parra MD, de Morentin BEM, Cobo JM, Mateos A, Martinez JA (2004) Daily ingestion of fermented milk containing Lactobacillus casei DN114001 improves innate-defense capacity in healthy middle-aged people. J Physiol Biochem 60(2):85–91PubMedCrossRefGoogle Scholar
  7. 7.
    Olivares M, Diaz-Ropero MP, Gomez N, Lara-Villoslada F, Sierra S, Maldonado JA, Martin R, Rodriguez JM, Xaus J (2006) The consumption of two new probiotic strains, Lactobacillus gasseri CECT 5714 and Lactobacillus coryniformis CECT 5711, boosts the immune system of healthy humans. Int Microbiol 9(1):47–52PubMedGoogle Scholar
  8. 8.
    Dong H, Rowland I, Tuohy KM, Thomas LV, Yaqoob P (2010) Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production. Clin Exp Immunol 161(2):378–388. doi: 10.1111/j.1365-2249.2010.04173.x PubMedCentralPubMedGoogle Scholar
  9. 9.
    Mane J, Pedrosa E, Loren V, Gassull MA, Espadaler J, Cune J, Audivert S, Bonachera MA, Cabre E (2011) A mixture of Lactobacillus plantarum CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects. A dose-response, double-blind, placebo-controlled, randomized pilot trial. Nutr Hosp 26(1):228–235PubMedGoogle Scholar
  10. 10.
    Ortiz-Andrellucchi A, Sanchez-Villegas A, Rodriguez-Gallego C, Lemes A, Molero T, Soria A, Pena-Quintana L, Santana M, Ramirez O, Garcia J, Cabrera F, Cobo J, Serra-Majem L (2008) Immunomodulatory effects of the intake of fermented milk with Lactobacillus casei DN114001 in lactating mothers and their children. Br J Nutr 100(4):834–845. doi: 10.1017/S0007114508959183 PubMedCrossRefGoogle Scholar
  11. 11.
    Sierra S, Lara-Villoslada F, Sempere L, Olivares M, Boza J, Xaus J (2010) Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 16(3):195–200. doi: 10.1016/j.anaerobe.2010.02.001 PubMedCrossRefGoogle Scholar
  12. 12.
    Reale M, Boscolo P, Bellante V, Tarantelli C, Di Nicola M, Forcella L, Li Q, Morimoto K, Muraro R (2012) Daily intake of Lactobacillus casei Shirota increases natural killer cell activity in smokers. Br J Nutr 108(2):308–314. doi: 10.1017/S0007114511005630 PubMedCrossRefGoogle Scholar
  13. 13.
    Hojsak I, Snovak N, Abdovic S, Szajewska H, Misak Z, Kolacek S (2010) Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: a randomized, double-blind, placebo-controlled trial. Clin Nutr 29(3):312–316. doi: 10.1016/j.clnu.2009.09.008 PubMedCrossRefGoogle Scholar
  14. 14.
    Klaenhammer TR, Kullen MJ (1999) Selection and design of probiotics. Int J Food Microbiol 50(1–2):45–57PubMedCrossRefGoogle Scholar
  15. 15.
    Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82(1–4):279–289PubMedCrossRefGoogle Scholar
  16. 16.
    Ohland CL, MacNaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298(6):G807–G819. doi: 10.1152/ajpgi.00243.2009 PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki K, Fagarasan S (2008) How host-bacterial interactions lead to IgA synthesis in the gut. Trends Immunol 29(11):523–531. doi: 10.1016/j.it.2008.08.001 PubMedCrossRefGoogle Scholar
  18. 18.
    Brandtzaeg P (2007) Do salivary antibodies reliably reflect both mucosal and systemic immunity? Ann N Y Acad Sci 1098:288–311. doi: 10.1196/annals.1384.012 PubMedCrossRefGoogle Scholar
  19. 19.
    Cerutti A, Rescigno M (2008) The biology of intestinal immunoglobulin A responses. Immunity 28(6):740–750. doi: 10.1016/j.immuni.2008.05.001 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Black F, Einarsson K, Lidbeck A, Orrhage K, Nord CE (1991) Effect of lactic-acid producing bacteria on the human intestinal microflora during ampicillin treatment. Scand J Infect Dis 23(2):247–254. doi: 10.3109/00365549109023408 PubMedCrossRefGoogle Scholar
  21. 21.
    Cadieux P, Burton J, Gardiner G, Braunstein I, Bruce AW, Kang CY, Reid G (2002) Lactobacillus strains and vaginal ecology. JAMA 287(15):1940–1941. doi: 10.1001/jama.287.15.1940 PubMedCrossRefGoogle Scholar
  22. 22.
    Huang JS, Bousvaros A, Lee JW, Diaz A, Davidson EJ (2002) Efficacy of probiotic use in acute diarrhea in children—a meta-analysis. Dig Dis Sci 47(11):2625–2634. doi: 10.1023/A:1020501202369 PubMedCrossRefGoogle Scholar
  23. 23.
    Johnson BC, Supina AL, Ospina M, Vohra S (2007) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 2. doi: 10.1002/14651858.Cd004827.Pub2
  24. 24.
    Sazawal S, Hiremath G, Dhingra U, Malik P, Deb S, Black RE (2006) Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect Dis 6(6):374–382. doi: 10.1016/S1473-3099(06)70495-9 PubMedCrossRefGoogle Scholar
  25. 25.
    Guillemard E, Tondu F, Lacoin F, Schrezenmeir J (2010) Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br J Nutr 103(1):58–68. doi: 10.1017/S0007114509991395 PubMedCrossRefGoogle Scholar
  26. 26.
    Hatakka K, Savilahti E, Ponka A, Meurman JH, Poussa T, Nase L, Saxelin M, Korpela R (2001) Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. Br Med J 322(7298):1327–1329. doi: 10.1136/bmj.322.7298.1327 CrossRefGoogle Scholar
  27. 27.
    Maldonado J, Canabate F, Sempere L, Vela F, Sanchez AR, Narbona E, Lopez-Huertas E, Geerlings A, Valero AD, Olivares M, Lara-Villoslada F (2012) Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr 54(1):55–61. doi: 10.1097/Mpg.0b013e3182333f18 PubMedCrossRefGoogle Scholar
  28. 28.
    Morrow LE, Kollef MH, Casale TB (2010) Probiotic prophylaxis of ventilator-associated pneumonia a blinded, randomized, controlled trial. Am J Respir Crit Care 182(8):1058–1064. doi: 10.1164/rccm.200912-1853OC CrossRefGoogle Scholar
  29. 29.
    Siempos II, Ntaidou TK, Falagas ME (2010) Impact of the administration of probiotics on the incidence of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. Crit Care Med 38(3):954–962. doi: 10.1097/Ccm.0b013e3181c8fe4b PubMedCrossRefGoogle Scholar
  30. 30.
    Seifert S, Bub A, Franz CMAP, Watzl B (2011) Probiotic Lactobacillus casei Shirota supplementation does not modulate immunity in healthy men with reduced natural killer cell activity. J Nutr 141(5):978–984. doi: 10.3945/jn.110.136440 PubMedCrossRefGoogle Scholar
  31. 31.
    Glück U, Gebbers JO (2003) Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and beta-hemolytic streptococci). Am J Clin Nutr 77(2):517–520PubMedGoogle Scholar
  32. 32.
    Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8(4):151–156. doi: 10.1111/j.1472-765X.1989.tb00262.x CrossRefGoogle Scholar
  33. 33.
    Björkroth KJ, Korkeala HJ (1996) Evaluation of Lactobacillus sake contamination in vacuum-packaged sliced cooked meat products by ribotyping. J Food Prot 59(4):398–401Google Scholar
  34. 34.
    Sneath PHASR (1973) Numerical taxonomy: the principles and practise of numerical classification. Freeman, San FranciscoGoogle Scholar
  35. 35.
    Papadimitriou K, Anastasiou R, Mavrogonatou E, Blom J, Papandreou NC, Hamodrakas SJ, Ferreira S, Renault P, Supply P, Pot B, Tsakalidou E (2014) Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex. BMC Genom 15:272. doi: 10.1186/1471-2164-15-272 CrossRefGoogle Scholar
  36. 36.
    Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Dusko Ehrlich S, Guedon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29(3):435–463. doi: 10.1016/j.femsre.2005.04.008 PubMedGoogle Scholar
  37. 37.
    Kilian M (2002) Streptococcus and Enterococcus. In: Greenwood D, Slack RCB, Peutherer JF (eds) Medical microbiology. Churchill Livingstone, Edingburgh, pp 174–188Google Scholar
  38. 38.
    Huch M, De Bruyne K, Cleenwerck I, Bub A, Cho GS, Watzl B, Snauwaert I, Franz CM, Vandamme P (2013) Streptococcus rubneri sp. nov., isolated from the human throat. Int J Syst Evol Microbiol 63(Pt 11):4026–4032. doi: 10.1099/ijs.0.048538-0 PubMedCrossRefGoogle Scholar
  39. 39.
    du Toit M, Huch M, Cho G-S, Franz CMAP (2014) The genus Streptococcus. In: Holzapfel WH, Wood BJB (eds) Lactic acid bacteria: biodiversity and taxonomy. Wiley, Chichester, pp 457–505. doi: 10.1002/9781118655252.ch28 CrossRefGoogle Scholar
  40. 40.
    Gaillot O, Wetsch M, Fortineau N, Berche P (2000) Evaluation of CHROMagar Staph, aureus, a new chromogenic medium, for isolation and presumptive identification of Staphylococcus aureus from human clinical specimens. J Clin Microbiol 38(4):1587–1591PubMedCentralPubMedGoogle Scholar
  41. 41.
    Flayhart D, Lema C, Borek A, Carroll KC (2004) Comparison of the BBL CHROMagar Staph aureus agar medium to conventional media for detection of Staphylococcus aureus in respiratory samples. J Clin Microbiol 42(8):3566–3569. doi: 10.1128/jcm.42.8.3566-3569.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Han ZL, Lautenbach E, Fishman N, Nachamkin I (2007) Evaluation of mannitol salt agar, CHROMagar Staph aureus and CHROMagar MRSA for detection of meticillin-resistant Staphylococcus aureus from nasal swab specimens. J Med Microbiol 56(1):43–46. doi: 10.1099/jmm.0.46777-0 PubMedCrossRefGoogle Scholar
  43. 43.
    Shittu A, Lin J, Morrison D, Kolawole D (2006) Identification and molecular characterization of mannitol salt positive, coagulase-negative staphylococci from nasal samples of medical personnel and students. J Med Microbiol 55(3):317–324. doi: 10.1099/jmm.0.46072-0 PubMedCrossRefGoogle Scholar
  44. 44.
    Lowy FD (1998) Medical progress—Staphylococcus aureus infections. N Engl J Med 339(8):520–532. doi: 10.1056/Nejm199808203390806 PubMedCrossRefGoogle Scholar
  45. 45.
    Pulverer G (1993) Carriers of staphylococci causing nosocomial infections. Zbl Hyg Umweltmed 194(1–2):144–151Google Scholar
  46. 46.
    Kluytmans JAJW, Wertheim HFL (2005) Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection 33(1):3–8. doi: 10.1007/s15010-005-4012-9 PubMedCrossRefGoogle Scholar
  47. 47.
    Nilsson P, Ripa T (2006) Staphylococcus aureus throat colonization is more frequent than colonization in the anterior nares. J Clin Microbiol 44(9):3334–3339. doi: 10.1128/Jcm.00880-06 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Bridges-Webb C, Gulasekharam J, Graydon JJ (1971) A bacteriological study of the upper respiratory tract in normal families. Med J Aust 1(14):735–738PubMedGoogle Scholar
  49. 49.
    Feery BJ, Forsell P, Gulasekharam M (1976) Streptococcal sore throat in general practice—a controlled study. Med J Aust 1(26):989–991PubMedGoogle Scholar
  50. 50.
    Levy RM, Leyden JJ, Margolis DJ (2005) Colonisation rates of Streptococcus pyogenes and Staphylococcus aureus in the oropharynx of a young adult population. Clin Microbiol Infect 11(2):153–155. doi: 10.1111/j.1469-0691.2004.01042.x PubMedCrossRefGoogle Scholar
  51. 51.
    Morita JY, Kahn E, Thompson T, Laclaire L, Beall B, Gherardi G, O’Brien KL, Schwartz B (2000) Impact of azithromycin on oropharyngeal carriage of group A Streptococcus and nasopharyngeal carriage of macrolide-resistant Streptococcus pneumoniae. Pediatr Infect Dis J 19(1):41–46PubMedCrossRefGoogle Scholar
  52. 52.
    Gunnarsson RK, Holm SE, Soderstrom M (1998) The prevalence of potential pathogenic bacteria in nasopharyngeal samples from healthy children and adults. Scand J Prim Health Care 16(1):13–17PubMedCrossRefGoogle Scholar
  53. 53.
    Begovac J, Bobinac E, Benic B, Desnica B, Maretic T, Basnec A, Kuzmanovic N (1993) Asymptomatic pharyngeal carriage of beta-hemolytic streptococci and streptococcal pharyngitis among patients at an urban hospital in croatia. Eur J Epidemiol 9(4):405–410. doi: 10.1007/Bf00157398 PubMedCrossRefGoogle Scholar
  54. 54.
    Zwart S, Ruijs GJHM, Sachs APE, Van Leeuwen WJ, Gubbels JW, De Melker RA (2000) Beta-haemolytic streptococci isolated from acute sore-throat patients: cause or coincidence? A case-control study in general practice. Scand J Infect Dis 32(4):377–384PubMedCrossRefGoogle Scholar
  55. 55.
    Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, American Society for Microbiology (1999) Manual of clinical microbiology, 7th edn. ASM Press, Washington, DCGoogle Scholar
  56. 56.
    Villena J, Chiba E, Tomosada Y, Salva S, Marranzino G, Kitazawa H, Alvarez S (2012) Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C). BMC Immunol 13:53. doi: 10.1186/1471-2172-13-53 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Villena J, Barbieri N, Salva S, Herrera M, Alvarez S (2009) Enhanced immune response to pneumococcal infection in malnourished mice nasally treated with heat-killed Lactobacillus casei. Microbiol Immunol 53(11):636–646. doi: 10.1111/j.1348-0421.2009.00171.x PubMedCrossRefGoogle Scholar
  58. 58.
    Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM (2012) Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 18:270–285. doi: 10.2119/molmed.2011.00201 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Charles M. A. P. Franz
    • 1
    Email author
  • Melanie Huch
    • 1
  • Stephanie Seifert
    • 2
  • Jeannette Kramlich
    • 1
  • Achim Bub
    • 2
  • Gyu-Sung Cho
    • 1
  • Bernhard Watzl
    • 2
  1. 1.Department of Safety and Quality of Fruit and VegetablesMax Rubner-Institut, Federal Research Institute for Nutrition and FoodKarlsruheGermany
  2. 2.Department of Physiology and Biochemistry of NutritionMax Rubner-Institut, Federal Research Institute for Nutrition and FoodKarlsruheGermany

Personalised recommendations