Skip to main content

Advertisement

Log in

The immune response and antibacterial therapy

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The host’s immune defence mechanisms are indispensable factors in surviving bacterial infections. However, in many circumstances, the immune system alone is inadequate. Since the 1940s, the use of antibacterial therapy has saved millions of lives, improving the span and quality of life of individuals. Unfortunately, we are now facing an era where antibacterial agents are threatened by resistance. In addition to targeting bacteria, some antibacterial agents affect various aspects of the immune response to infection. Since many antibacterial drugs are failing in efficacy due to resistance, it has been strongly suggested that any synergy between these drugs and the immune response be exploited in the treatment of bacterial infections. This review explores the influence of antibacterial therapy on the immune response and new approaches that could exploit this interaction for the treatment of bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Drusano G et al (2011) Saturability of granulocyte kill of Pseudomonas aeruginosa in a murine model of pneunonia. Antimicrob Agents Chemother 55(6):2693–2695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mazzilli M, Zecconi A (2010) Assesment of epithelial cells’ immune and inflammatory responses to Staphylococcus aureus when exposed to a macrolide. J Dairy Res 77:404–410

    Article  CAS  PubMed  Google Scholar 

  3. Dalhoff A (2005) Contribution of immunocompetence to the antibacterial activities of ciprofloxacin and mixofloxacin in an in vitro pharmacodynamic model. Infection 33(2):44–49

    Article  CAS  PubMed  Google Scholar 

  4. Raffatellu M et al (2006) Capsule-mediated immune evasion: a new hypothesis explaining aspects of typhoid fever pathogenesis. Infect Immun 74(1):19–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gordon MA (2008) Salmonella infections in immunocompromised adults. J Infect 56(6):413–422

    Article  PubMed  Google Scholar 

  6. Handel A, Margolis E, Levin BR (2008) Exploring the role of the immune response in preventing antibiotic resistance. J Theor Biol 256(4):655–662

    Article  PubMed  Google Scholar 

  7. Piddock LJV (2012) The crisis of no new antibiotics? What is the way forward? Lancet Infect Dis 12(3):249–253

    Article  PubMed  Google Scholar 

  8. World Economic Forum (2014) Global Risks, vol 60, 9th edn. World Economic Forum, Geneva

  9. Drusano GL et al (2010) Impact of burden on granulocyte clearance of bacteria in a mouse thigh infection model. Antimicrob Agents Chemother 54(10):4368–4372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Borody T et al (2002) Impaired host immunity contributes to Helicobacter pylori eradication failure. Am J Gastroenterol 97(12):3032–3037

    Article  PubMed  Google Scholar 

  11. Bakker-Woudenberg IA, de Jong-Hoenderop JY, Michel MF (1979) Efficacy of antimicrobial therapy in experimental rat pneumonia: effects of impaired phagocytosis. Infect Immun 25(1):366–375

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Tulkens PM (1991) Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis 10(2):100–106

    Article  CAS  PubMed  Google Scholar 

  13. Garzoni C, Kelley WL (2009) Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol 17(2):59–65

    Article  CAS  PubMed  Google Scholar 

  14. Fraunholz M, Sinha B (2012) Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol 2:43

    Article  PubMed Central  PubMed  Google Scholar 

  15. Seral C et al (2005) Comparative activity of quinolones (ciprofloxacin, levofloxacin, moxifloxacin and garenoxacin) against extracellular and intracellular infection by Listeria monocytogenes and Staphylococcus aureus in J774 macrophages. J Antimicrob Chemother 55(4):511–517

    Article  CAS  PubMed  Google Scholar 

  16. McDonald PJ, Pruul H (1992) Macrolides and the immune system. Scand J Infect Dis Suppl 83:34–40

    CAS  PubMed  Google Scholar 

  17. Labro MT, Benna JE, Abdelghaffar H (1993) Modulation of human polymorphonuclear neutrophil function by macrolides: preliminary data concerning dirithromycin. J Antimicrob Chemother 31(suppl C):51–64

    Article  CAS  PubMed  Google Scholar 

  18. Wenisch C et al (1996) Effect of single oral dose of azithromycin, clarithromycin, and roxithromycin on polymorphonuclear leukocyte function assessed ex vivo by flow cytometry. Antimicrob Agents Chemother 40(9):2039–2042

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Sugihara E (1997) Effect of macrolide antibiotics on neutrophil function in human peripheral blood. Kansenshogaku Zasshi 71(4):329–336

    Article  CAS  PubMed  Google Scholar 

  20. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(suppl 1):5–16

    Article  CAS  PubMed  Google Scholar 

  21. Matuschek E, Brown DF, Kahlmeter G (2013) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20(4):255–266

  22. Hombach M, Bloemberg GV, Böttger EC (2011) Effects of clinical breakpoint changes in CLSI guidelines 2010/2011 and EUCAST guidelines 2011 on antibiotic susceptibility test reporting of Gram-negative bacilli. J Antimicrob Chemother 67(3):622–632

  23. Brook I (1991) In vitro susceptibility vs. in vivo efficacy of various antimicrobial agents against the Bacteroides fragilis group. Rev Infect Dis 13(6):1170–1180

    Article  CAS  PubMed  Google Scholar 

  24. Sandberg A et al (2009) Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model. Antimicrob Agents Chemother 53(5):1874–1883. doi:10.1128/AAC.01605-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sandberg A et al (2010) Intra- and extra-cellular activities of dicloxacillin against Staphylococcus aureus in vivo and in vitro. Antimicrob Agents Chemother 54(6):2391–2400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Carryn S et al (2003) Intracellular pharmacodynamics of antibiotics. Infect Dis Clin N Am 17(3):615–634

    Article  Google Scholar 

  27. Van Bambeke F et al (2006) Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr Opin Drug Discov Dev 9(2):218–230

    Google Scholar 

  28. Lin JH, Lu AYH (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49(4):403–449

    CAS  PubMed  Google Scholar 

  29. de Araujo BV et al (2011) PK-PD modeling of beta-lactam antibiotics: in vitro or in vivo models? J Antibiot (Tokyo) 64(6):439–446. doi:10.1038/ja.2011.29

    Article  Google Scholar 

  30. Tauber S, Nau R (2008) Immunomodulatory properties of antibiotics. Curr Mol Pharmacol 1:68–79

    Article  CAS  PubMed  Google Scholar 

  31. Pasquale T, Tan J (2005) Nonantimicrobial effects of antibiotics. Clin Infect Dis 40:127–135

    Article  CAS  PubMed  Google Scholar 

  32. Parnham M (2005) Immunomodulatory effects of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis 18:125–131

    Article  CAS  PubMed  Google Scholar 

  33. Lai AY, Todd KG (2006) Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines. Glia 53(8):809–816

    Article  PubMed  Google Scholar 

  34. Pomorska-Mol M, Pejsak Z (2012) Effects of antibiotics on acquired immunity in vivo—current state of knowledge. Pol J Vet Sci 15(3):583–588

    CAS  PubMed  Google Scholar 

  35. Gomez-Lus ML et al (1997) Intracellular and extracellular killing of a penicillin-resistant, serotype-9 strain of Streptococcus pneumoniae by polymorphonuclear leucocytes in the presence of sub-inhibitory concentrations of clavulanic acid. J Antimicrob Chemother 40(1):142–144

    Article  CAS  PubMed  Google Scholar 

  36. Cai Y, Cao X, Aballay A (2014) Whole-animal chemical screen identifies colistin as a new immunomodulator that targets conserved pathways. mBio. doi:10.1128/mBio.01235-14

  37. Mor F, Cohen IR (2012) Beta-lactam antibiotics modulate T-cell functions and gene expression via covalent binding to cellular albumin. Proc Natl Acad Sci 110(8):2981–2986

    Article  Google Scholar 

  38. Ochoa-Reparaz J et al (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 183(10):6041–6050

    Article  CAS  PubMed  Google Scholar 

  39. Ochoa-Reparaz J et al (2010) Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes 1(2):103–108

    Article  PubMed Central  PubMed  Google Scholar 

  40. Iida N et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  PubMed  Google Scholar 

  41. Kalghatgi S et al (2013) Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med 5(192):192ra85

    Article  PubMed Central  PubMed  Google Scholar 

  42. Rolston KV (2004) Management of infections in the neutropenic patient. Annu Rev Med 55:519–526

    Article  CAS  PubMed  Google Scholar 

  43. Greenberg SB (2002) Infections in the immunocompromised rheumatologic patient. Crit Care Clin 18(4):931–956

    Article  PubMed  Google Scholar 

  44. Neumann S et al (2013) Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematological malignancies and solid tumors: guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 92(4):433–442. doi:10.1007/s00277-013-1698-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Algar V, Novelli V (2007) Infections in the immunocompromised host. Paediatr Child Health 17(4):132–136

    Article  Google Scholar 

  46. Shenep JL (1998) Antimicrobial therapy in the immunocompromised host. Semin Pediatr Infect Dis 9(4):330–338

    Article  Google Scholar 

  47. Drayson M (2011) Tackling early morbidity and mortality in myeloma: assessing the benefit of antibiotic prophylaxis and its effect on healthcare associated infections. http://www2.warwick.ac.uk/fac/med/research/hscience/ctu/trials/cancer/teamm/trialsummary/teamm_protocol_v3.0_jan_2012.pdf. Accessed 06 Aug 2014

  48. Smith PF et al (2003) Safety, efficacy and pharmacokinetics of linezolid for treatment of resistant Gram-positive infections in cancer patients with neutropenia. Ann Oncol 14(5):795–801

    Article  CAS  PubMed  Google Scholar 

  49. Moschovi M et al (2010) Efficacy and safety of linezolid in immunocompromised children with cancer. Pediatr Int 52(5):694–698

    Article  CAS  PubMed  Google Scholar 

  50. Wang JL, Hsueh PR (2009) Therapeutic options for infections due to vancomycin-resistant enterococci. Expert Opin Pharmacother 10(5):785–796

    Article  CAS  PubMed  Google Scholar 

  51. Hancock REW, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10(4):243–254

    Article  CAS  PubMed  Google Scholar 

  52. Hawn TR et al (2013) Host-directed therapeutics for tuberculosis: can we harness the host? Microbiol Mol Biol Rev 77(4):608–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Spellberg B, Bartlett JG, Gilbert DN (2013) The future of antibiotics and resistance. N Engl J Med 368(4):299–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Martins M, Viveiros M, Amaral L (2008) Inhibitors of Ca2+ and K+ transport enhance intracellular killing of M. tuberculosis by non-killing macrophages. In Vivo 22(1):69–75

    CAS  PubMed  Google Scholar 

  55. Martins M (2011) Targeting the human macrophage with combinations of drugs and inhibitors of Ca2+ and K+ transport to enhance the killing of intracellular multi-drug resistant Mycobacterium tuberculosis (MDR-TB)—a novel, patentable approach to limit the emergence of XDR-TB. Recent Pat Antiinfect Drug Discov 6(2):110–117

    Article  CAS  PubMed  Google Scholar 

  56. Sada-Ovalle I et al (2010) Alpha-galactosylceramide as a therapeutic agent for pulmonary Mycobacterium tuberculosis infection. Am J Respir Crit Care Med 182(6):841–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Brandl K et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455(7214):804–807. doi:10.1038/nature07250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kinnebrew MA et al (2010) Bacterial flagellin stimulates toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 201(4):534–543. doi:10.1086/650203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Sparo, Sánchez BSF (2012) Approach to optimise the treatment of bacterial infections: combined antimicrobial therapy with enhancers of innate immunity. Clin Exp Pharmacol. doi:10.4172/2161-1459.1000e106

  60. Fumuso E et al (2004) Non-specific immunomodulation combined with enrofloxacin in the treatment of enrofloxacin in mares. In: Proceedings of the 2nd congress of antimicrobial agents in veterinary medicine, Canada

  61. Jareoncharsri P et al (2003) An open-label, prospective study of an oral polyvalent bacterial lysate (Luivac) in the treatment of recurrent respiratory tract infections in Thai patients. Asian Pac J Allergy Immunol 21(4):223–230

    CAS  PubMed  Google Scholar 

  62. Connolly DJ, O’Neill LAJ (2012) New developments in toll-like receptor targeted therapeutics. Curr Opin Pharmacol 12(4):510–518

    Article  CAS  PubMed  Google Scholar 

  63. Reilly M et al (2013) Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody. Clin Pharmacol Ther 94(5):593–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Tidswell M et al (2010) Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Crit Care Med 38(1):72–83. doi:10.1097/CCM.0b013e3181b07b78

    Article  CAS  PubMed  Google Scholar 

  65. Opal SM et al (2013) Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309(11):1154–1162

    Article  CAS  PubMed  Google Scholar 

  66. Shirey KA et al (2013) The TLR4 antagonist eritoran protects mice from lethal influenza infection. Nature 497(7450):498–502

  67. Velden WJ et al (2009) Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med 7:44. doi:10.1186/1741-7015-7-44

    Article  PubMed Central  PubMed  Google Scholar 

  68. van der Does AM et al (2010) Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob Agents Chemother 54(2):811–816

    Article  PubMed Central  PubMed  Google Scholar 

  69. van der Does AM et al (2012) The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol 188(10):5012–5019

    Article  PubMed  Google Scholar 

  70. Nathan C (2012) Fresh approaches to anti-infective therapies. Sci Transl Med 4(140):140sr2

    Article  PubMed Central  PubMed  Google Scholar 

  71. Napier RJ et al (2011) Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10(5):475–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wu K et al (2012) Improved control of tuberculosis and activation of macrophages in mice lacking protein kinase R. PLoS One 7(2):e30512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Sadler AJ, Williams BR (2007) Structure and function of the protein kinase R. Curr Top Microbiol Immunol 316:253–292

    CAS  PubMed  Google Scholar 

  74. Chiang N et al (2012) Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484(7395):524–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Piacentini G et al (2007) Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: a preliminary report. Allergy Asthma Proc 28:194–198

    Article  PubMed  Google Scholar 

  76. Sanz M-J, Abu Nabah YN, Cerda-Nicolas M (2004) Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression. Br J Pharmacol 144(2):190–201

    Article  PubMed Central  Google Scholar 

  77. Carlone NA et al (1989) Comparative effects of roxithromycin and erythromycin on cellular immune functions in vitro. 2. Chemotaxis and phagocytosis of 3H-Staphylococcus aureus by human macrophages. Microbios 58(234):17–25

    CAS  PubMed  Google Scholar 

  78. Bailly S, Fay M, Gougerot-Pocidalo MA (1990) Effects of quinolones on tumor necrosis factor production by human monocytes. Int J Immunopharmacol 12:31–36

    Article  CAS  PubMed  Google Scholar 

  79. Vardhan H et al (2009) Persistently elevated level of IL-8 in Chlamydia trachomatis infected HeLa 229 cells is dependent on intracellular available iron. Mediat Inflamm 2009:417658. doi:10.1155/2009/417658

    Article  Google Scholar 

  80. Kothe H et al (2000) Hydroxymethylglutaryl coenzyme A reductase inhibitors modify the inflammatory response of human macrophages and endothelial cells infected with Chlamydia pneumoniae. Circulation 101(15):1760–1763

    Article  CAS  PubMed  Google Scholar 

  81. Suomalainen K et al (1992) Specificity of the anticollagenase action of tetracyclines: relevance to their antiinflammatory potential. Antimicrob Agents Chemother 36:227–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Kriz J, Nguyen MD, Julien JP (2002) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 10(3):268–278

    Article  CAS  PubMed  Google Scholar 

  83. Su H et al (1999) The effect of doxycycline treatment on the development of protective immunity in a murine model of chlamydial genital infection. J Infect Dis 180(4):1252–1258

    Article  CAS  PubMed  Google Scholar 

  84. Naess A, Andreeva H, Sornes S (2011) Tigecycline attenuates polymorphonuclear leukocyte (PMN) receptors but not functions. Acta Pharm 61(3):297–302

    Article  CAS  PubMed  Google Scholar 

  85. Brooks BM, Hart CA, Coleman JW (2005) Differential effects of beta-lactams on human IFN-gamma activity. J Antimicrob Chemother 56(6):1122–1125 Epub 2005 Oct 20

    Article  CAS  PubMed  Google Scholar 

  86. Fishman JA, Rubin RH (1998) Infection in organ-transplant recipients. N Engl J Med 338(24):1741–1751

    Article  CAS  PubMed  Google Scholar 

  87. Singh N, Paterson DL (1998) Mycobacterium tuberculosis infection in solid-organ transplant recipients: impact and implications for management. Clin Infect Dis 27(5):1266–1277

    Article  CAS  PubMed  Google Scholar 

  88. Ampel NM, Wing EJ (1990) Legionella infection in transplant patients. Semin Respir Infect 5(1):30–37

    CAS  PubMed  Google Scholar 

  89. Dhar JM et al (1991) Non-typhoid Salmonella in renal transplant recipients: a report of twenty cases and review of the literature. Q J Med 78(287):235–250

    CAS  PubMed  Google Scholar 

  90. Holden FA, Kaczmer JE, Kinahan CC (1980) Listerial meningitis and renal allografts: a life-threatening affinity. Postgrad Med 68(6):69–74

    CAS  PubMed  Google Scholar 

  91. Wilson JP et al (1989) Nocardial infections in renal transplant recipients. Medicine (Baltim) 68(1):38–57

    Article  CAS  Google Scholar 

  92. Ram S, Lewis LA, Rice PA (2010) Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 23(4):740–780. doi:10.1128/CMR.00048-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Robin May and Dr. Richard Bax for reading this manuscript, constructive criticism and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura V. Piddock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anuforom, O., Wallace, G.R. & Piddock, L.V. The immune response and antibacterial therapy. Med Microbiol Immunol 204, 151–159 (2015). https://doi.org/10.1007/s00430-014-0355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0355-0

Keywords

Navigation