Medical Microbiology and Immunology

, Volume 203, Issue 2, pp 109–114 | Cite as

Response profiles of cytokines and chemokines against avian H9N2 influenza virus within the mouse lung

  • Rong Huang
  • Jiyuan Liu
  • Wei Liang
  • Airong Wang
  • Zhihao Liu
  • Yan Yang
  • Jing Lv
  • Ying Bao
  • Yanxia Gao
  • Zengmin Miao
  • Tongjie Chai
Original Investigation

Abstract

The circulation of H9N2 viruses throughout the world, along with their expanded host range, poses a potential health risk to the public, but the host responses to H9N2 virus in mammals were little known. To obtain insight into the host immune responses to the avian H9N2 virus, the expressions of both cytokines and chemokines in the lungs of infected mice were examined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We found that interferon gamma (IFN-γ) was the dominant antiviral component, and IFN-γ-induced protein 10 kDa, interleukin 6, chemokine (C–C motif) ligand 5 and macrophage inflammatory protein-1 alpha all played a role in pro-inflammatory responses to H9N2 viruses. In conclusion, this research can make us further understand the infection characteristics of H9N2 virus in mammalian host by providing the data on mice lung immune responses to the avian H9N2 virus.

Keywords

Avian influenza virus H9N2 Mice Cytokines and chemokines 

References

  1. 1.
    Li C, Yu K, Tian G, Yu D, Liu L et al (2005) Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 340:70–83PubMedCrossRefGoogle Scholar
  2. 2.
    Ducatez MF, Webster RG, Webby RJ (2008) Animal influenza epidemiology. Vaccine 26(Suppl. 4):D67–D69PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Nagarajan S, Rajukumar K, Tosh C, Ramaswamy V, Purohit K, Saxena G, Behera P, Pattnaik B, Pradhan HK, Dubey SC (2009) Isolation and pathotyping of H9N2 avian influenza viruses in Indian poultry. Vet Microbiol 133:154–163PubMedCrossRefGoogle Scholar
  4. 4.
    Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL et al (1999) Human infection with influenza H9N2. Lancet 354:916–917PubMedCrossRefGoogle Scholar
  5. 5.
    Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH et al (2005) Human infection with an avian H9N2 influenza a virus in Hong Kong in 2003. J Clin Microbiol 43:5760–5767PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Cheng VC, Chan JF, Wen X, Wu WL, Que TL et al (2011) Infection of immunocompromised patients by avian H9N2 influenza a virus. J Infect 62(5):394–399PubMedCrossRefGoogle Scholar
  7. 7.
    Jia N, de Vlas SJ, Liu YX, Zhang JS, Zhan L et al (2009) Serological reports of human infections of H7 and H9 avian influenza viruses in northern China. J Clin Virol 44:225–229PubMedCrossRefGoogle Scholar
  8. 8.
    Pawar SD, Tandale BV, Raut CG, Parkhi SS, Barde TD et al (2012) Avian influenza H9N2 seroprevalence among poultry workers in Pune, India, 2010. PLoS ONE 7(5):e36374PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Uyeki TM, Nguyen DC, Rowe T, Lu X, Hu-Primmer J et al (2012) Seroprevalence of antibodies to avian Influenza A (H5) and A (H9) viruses among market poultry workers, Hanoi, Vietnam, 2001. PLoS ONE 7(8):e43948PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2001) X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci USA 98:11181–11186PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Imai M, Kawaoka Y (2012) The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr Opin Virol 2:160–167PubMedCrossRefGoogle Scholar
  12. 12.
    Butt AM, Siddique S, Idrees M, Tong Y (2010) Avian influenza A (H9N2): computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population. Virol J 7:319PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Matrosovich MN, Krauss S, Webster RG (2001) H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281:156–162PubMedCrossRefGoogle Scholar
  14. 14.
    Guan Y, Shortridge KF, Krauss S, Chin PS, Dyrting KC, Ellis TM, Webster RG, Peiris M (2000) H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 74:9372–9380PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G et al (2008) Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS ONE 3:e2923PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Sun Y, Qin K, Wang J, Pu J, Tang Q, Hu Y, Bi Y, Zhao X, Yang H, Shu Y, Liu J (2011) High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci USA 108:4164–4169PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368(20):1888–1897PubMedCrossRefGoogle Scholar
  18. 18.
    Reed LJ, Muench H (1938) A simple method of estimating fifty percent end points. Am J Epidemiol 27:493–497Google Scholar
  19. 19.
    Maines TR, Belser JA, Gustin KM, van Hoeven N, Zeng H et al (2012) Local innate immune responses and influenza virus transmission and virulence in ferrets. J Infect Dis 205:474–485PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang Z, Hu S, Li Z, Wang X, Liu M, Guo Z, Li S, Xiao Y, Bi D, Jin H (2011) Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infect Genet Evol 11(7):1790–1797PubMedCrossRefGoogle Scholar
  21. 21.
    Liang G, Chen M, Pan XL, Zheng J, Wang H (2011) Ethanol-induced inhibition of fetal hypothalamic-pituitary-adrenal axis due to prenatal overexposure to maternal glucocorticoid in mice. Exp Toxicol Pathol 63:607–611PubMedCrossRefGoogle Scholar
  22. 22.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  23. 23.
    Juknat A, Pietr M, Kozela E, Rimmerman N, Levy L, Coppola G et al (2012) Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ9-tetrahydrocannabinol in BV-2 microglial cells. Br J Pharmacol 165:2512–2528PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Jofre-Monseny L, Loboda A, Wagner AE, Huebbe P, Boesch-Saadatmandi C, Jozkowicz A, Minihane AM, Dulak J, Rimbach G (2007) Effects of apoE genotype on macrophage inflammation and heme oxygenase-1 expression. Biochem Biophys Res Commun 357:319–324PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Xu KM, Smith GJ, Bahl J, Duan L, Tai H et al (2007) The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol 81:10389–10401PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Y, Yin Y, Bi Y, Wang S, Xu S et al (2012) Molecular and antigenic characterization of H9N2 avian influenza virus isolates from chicken flocks between 1998 and 2007 in China. Vet Microbiol 156:285–293PubMedCrossRefGoogle Scholar
  27. 27.
    Bi J, Deng G, Dong J, Kong F, Li X et al (2010) Phylogenetic and molecular characterization of H9N2 influenza isolates from chickens in Northern China from 2007–2009. PLoS ONE 5:e13063PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Deng G, Bi J, Kong F, Li X, Xu Q et al (2010) Acute respiratory distress syndrome induced by H9N2 virus in mice. Arch Virol 155:187–195PubMedCrossRefGoogle Scholar
  29. 29.
    Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM (2008) H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 4:e1000115PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Karpuzoglu E, Ahmed SA (2006) Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide 15:177–186PubMedCrossRefGoogle Scholar
  31. 31.
    Van Snick J (1990) Interleukin-6: an overview. Annu Rev Immunol 8:253–278PubMedCrossRefGoogle Scholar
  32. 32.
    Nang NT, Lee JS, Song BM, Kang YM, Kim HS et al (2011) Induction of inflammatory cytokines and toll-like receptors in chickens infected with avian H9N2 influenza virus. Vet Res 42:64PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Xing Z, Harper R, Anunciacion J, Yang Z, Gao W et al (2011) Host immune and apoptotic responses to avian influenza virus H9N2 in human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 44:24–33PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Qu B, Li X, Gao W, Sun W, Jin Y, Cardona CJ, Xing Z (2012) Human intestinal epithelial cells are susceptible to influenza virus subtype H9N2. Virus Res 163:151–159PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rong Huang
    • 1
    • 2
    • 3
  • Jiyuan Liu
    • 1
    • 2
    • 3
  • Wei Liang
    • 1
    • 2
    • 3
  • Airong Wang
    • 1
    • 2
    • 3
  • Zhihao Liu
    • 1
    • 2
    • 3
  • Yan Yang
    • 1
    • 2
    • 3
  • Jing Lv
    • 4
  • Ying Bao
    • 5
  • Yanxia Gao
    • 6
  • Zengmin Miao
    • 6
  • Tongjie Chai
    • 1
    • 2
    • 3
  1. 1.College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai’anChina
  2. 2.Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai’anChina
  3. 3.Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong ProvinceTai’anChina
  4. 4.Centre for Disease ControlTai’anChina
  5. 5.Tai’an City Central HospitalTai’anChina
  6. 6.College of Life SciencesTaishan Medical UniversityTai’anChina

Personalised recommendations