Medical Microbiology and Immunology

, Volume 202, Issue 5, pp 327–337 | Cite as

Epigenetic modifications induced by Helicobacter pylori infection through a direct microbe–gastric epithelial cells cross-talk

  • Lorenzo ChiariottiEmail author
  • Tiziana Angrisano
  • Simona Keller
  • Ermanno Florio
  • Ornella Affinito
  • Pierlorenzo Pallante
  • Cinzia Perrino
  • Raffaela Pero
  • Francesca LemboEmail author


One of the most fascinating aspects of the field of epigenetics is the emerging ability of environmental factors to trigger epigenetic changes in eukaryotic cells, thus contributing to transient or stable, and potentially heritable, changes in gene expression program in the absence of alteration in DNA sequence. Epigenetic response may result in cell adaptation to environmental stimuli or, in some instances, may contribute to generation or progression of different kind of diseases. A paradigmatic case of disease that is accompanied by multiple epigenetic alterations is gastric cancer, among other relevant examples. In turn, Helicobacter pylori (Hp) infection has been associated as a leading cause of gastric cancer. One possible hypothesis is that Hp–gastric cell interaction initiates an epigenetic reprogramming of host cell genome that may favor tumorigenesis. Accordingly, an abundance of experimental evidence indicates that several epigenetic alterations underlie the gastric cancerogenesis process and that these alterations represent one of the major hallmarks of gastric cancer. However, several critical questions remain unanswered: Does Hp directly provoke epigenetic alterations? Which mechanisms underlie these phenomena? Based on currently available data, it is often arduous to discriminate between the epigenetic modifications directly triggered by Hp–gastric cell interaction and those alterations that are mediated by inflammation process or by many other molecular and genetic events occurring during the gastric cancer progression. We will review our present knowledge of epigenetic modifications and alterations proven to occur in host cells as a direct consequence of Hp infection.


Helicobacter pylori–gastric cell interaction Epigenetic alterations Gastric cancerogenesis DNA methylation Chromatin modifications 



This work was supported by “Progetto Bandiera Epigenomica EPIGEN”, C.N.R., by Italian Ministry for University and Research (PRIN 2009), by Progetto FARO, Polo delle Scienze e delle Tecnologie per la Vita, University of Naples, Italy, and by P.O.R. Campania FSE 2007-2013, Project CREME.


  1. 1.
    Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12(2):142–148PubMedCrossRefGoogle Scholar
  2. 2.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedCrossRefGoogle Scholar
  3. 3.
    Pero R, Lembo F, Di Vizio D, Boccia A, Chieffi P, Fedele M, Pierantoni GM, Rossi P, Iuliano R, Santoro M, Viglietto G, Bruni CB, Fusco A, Chiariotti L (2001) RNF4 is a growth inhibitor expressed in germ cells but not in human testicular tumors. Am J Pathol 159(4):1225–1230PubMedCrossRefGoogle Scholar
  4. 4.
    Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97PubMedCrossRefGoogle Scholar
  5. 5.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692PubMedCrossRefGoogle Scholar
  6. 6.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610PubMedCrossRefGoogle Scholar
  7. 7.
    Szyf M, McGowan P, Meaney MJ (2008) The social environment and the epigenome. Environ Mol Mutagen 49(1):46–60PubMedCrossRefGoogle Scholar
  8. 8.
    Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9(2):158–163PubMedCrossRefGoogle Scholar
  9. 9.
    Branco MR, Ficz G, Reik W (2011) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13(1):7–13PubMedGoogle Scholar
  10. 10.
    Belair C, Darfeuille F, Staedel C (2009) Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 15(9):806–812PubMedCrossRefGoogle Scholar
  11. 11.
    Noto JM, Peek RM (2011) The role of microRNAs in Helicobacter pylori pathogenesis and gastric carcinogenesis. Front Cell Infect Microbiol 1:21PubMedGoogle Scholar
  12. 12.
    Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347(15):1175–1186PubMedCrossRefGoogle Scholar
  13. 13.
    Parsonnet J, Vandersteen D, Goates J, Sibley RK, Pritikin J, Chang Y (1991) Helicobacter pylori infection in intestinal- and diffuse-type gastric adenocarcinomas. J Natl Cancer Inst 83(9):640–643PubMedCrossRefGoogle Scholar
  14. 14.
    Erkisi M, Colakoglu S, Köksal F, Tuncer I, Burgut R, Karaköse H, Doran F, Zorludemir S (1997) Relationship of Helicobacter pylori infection to several malignant and non-malignant gastrointestinal diseases. J Exp Clin Cancer Res 16(3):289–293PubMedGoogle Scholar
  15. 15.
    Komoto K, Haruma K, Kamada T, Tanaka S, Yoshihara M, Sumii K, Kajiyama G, Talley NJ (1998) Helicobacter pylori infection and gastric neoplasia: correlations with histological gastritis and tumor histology. Am J Gastroenterol 93(8):1271–1276PubMedCrossRefGoogle Scholar
  16. 16.
    Wang CC, Wu MS, Wang HH, Wang HP, Lee WC, Shun CT, Lin JT (1998) Helicobacter pylori infection and age on the development of intestinal metaplasia-a multiple logistic regression analysis. Hepatogastroenterology 45(24):2234–2237PubMedGoogle Scholar
  17. 17.
    You WC, Zhang L, Gail MH, Chang YS, Liu WD, Ma JL, Li JY, Jin ML, Hu YR, Yang CS, Blaser MJ, Correa P, Blot WJ, Fraumeni JF Jr, Xu GW (2000) Gastric dysplasia and gastric cancer: Helicobacter pylori, serum vitamin C, and other risk factors. J Natl Cancer Inst 92(19):1607–1612PubMedCrossRefGoogle Scholar
  18. 18.
    Peek RM, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2(1):28–37PubMedCrossRefGoogle Scholar
  19. 19.
    Zheng Q, Chen XY, Shi Y, Xiao SD (2004) Development of gastric adenocarcinoma in Mongolian gerbils after long-term infection with Helicobacter pilori. J Gastroenterol Hepatol 19(10):1192–1198PubMedCrossRefGoogle Scholar
  20. 20.
    (1994) Infection with Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum. 61:177-240Google Scholar
  21. 21.
    van Doorn LJ, Figueiredo C, Sanna R, Plaisier A, Schneeberger P, de Boer W, Quint W (1998) Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pilori. Gastroenterology 115(1):58–66PubMedCrossRefGoogle Scholar
  22. 22.
    Gerhard M, Lehn N, Neumayer N, Borén T, Rad R, Schepp W, Miehlke S, Classen M, Prinz C (1999) Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci USA 96(22):12778–12783PubMedCrossRefGoogle Scholar
  23. 23.
    Franco AT, Johnston E, Krishna U, Yamaoka Y, Israel DA, Nagy TA, Wroblewski LE, Piazuelo MB, Correa P, Peek RM Jr (2008) Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res 68(2):379–387PubMedCrossRefGoogle Scholar
  24. 24.
    Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Mémet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5(11):1166–1174PubMedCrossRefGoogle Scholar
  25. 25.
    Rad R, Ballhorn W, Voland P, Eisenächer K, Mages J, Rad L, Ferstl R, Lang R, Wagner H, Schmid RM, Bauer S, Prinz C, Kirschning CJ, Krug A (2009) Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology 136(7):2247–2257PubMedCrossRefGoogle Scholar
  26. 26.
    Basak C, Pathak SK, Bhattacharyya A, Pathak S, Basu J, Kundu M (2005) The secreted peptidyl prolyl cis, trans-isomerase HP0175 of Helicobacter pylori induces apoptosis of gastric epithelial cells in a TLR4- and apoptosis signal-regulating kinase 1-dependent manner. J Immunol 174(9):5672–5680PubMedGoogle Scholar
  27. 27.
    Delahay RM, Rugge M (2012) Pathogenesis of Helicobacter pylori infection. Helicobacter 17(Suppl 1):9–15PubMedCrossRefGoogle Scholar
  28. 28.
    Yamaoka Y, Kwon DH, Graham DY (2000) A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci USA 97(13):7533–7538PubMedCrossRefGoogle Scholar
  29. 29.
    Peek RM Jr, Crabtree JEJ (2006) Helicobacter infection and gastric neoplasia. Pathol 208(2):233–248CrossRefGoogle Scholar
  30. 30.
    Ernst PB, Peura DA, Crowe SE (2006) The translation of Helicobacter pylori basic research to patient care. Gastroenterology 130(1):188–206PubMedCrossRefGoogle Scholar
  31. 31.
    Tabassam FH, Graham DY, Yamaoka Y (2009) Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3beta phosphorylation. Cell Microbiol 11(1):70–82PubMedCrossRefGoogle Scholar
  32. 32.
    Bronte-Tinkew DM, Terebiznik M, Franco A, Ang M, Ahn D, Mimuro H, Sasakawa C, Ropeleski MJ, Peek RM Jr, Jones NL (2009) Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res 69(2):632–639PubMedCrossRefGoogle Scholar
  33. 33.
    Ding SZ, Goldberg JB, Hatakeyama M (2010) Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol 6(5):851–862PubMedCrossRefGoogle Scholar
  34. 34.
    Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MA (2012) Epigenetic mechanisms in gastric cancer. Epigenomics 4(3):279–294PubMedCrossRefGoogle Scholar
  35. 35.
    Nardone G, Compare D (2008) Epigenetic alterations due to diet and Helicobacter pylori infection in gastric carcinogenesis. Expert Rev Gastroenterol Hepatol 2(2):243–248PubMedCrossRefGoogle Scholar
  36. 36.
    Correa P, Houghton J (2007) Carcinogenesis of Helicobacter pylori. Gastroenterology 133(2):659–672PubMedCrossRefGoogle Scholar
  37. 37.
    Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT, Lynch H, Wiesner G, Ferguson K, Eng C, Park JG, Kim SJ, Markowitz S (2000) Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet 26(1):16–17PubMedCrossRefGoogle Scholar
  38. 38.
    Tamura G, Yin J, Wang S, Fleisher AS, Zou T, Abraham JM, Kong D, Smolinski KN, Wilson KT, James SP, Silverberg SG, Nishizuka S, Terashima M, Motoyama T, Meltzer SJ (2000) E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst 92(7):569–573PubMedCrossRefGoogle Scholar
  39. 39.
    Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M, Arii K, Kaneda A, Tsukamoto T, Tatematsu M, Tamura G, Saito D, Sugimura T, Ichinose M, Ushijima T (2006) High levels of aberrant DNA methylation in Helicobacter pilori infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12(3 Pt 1):989–995PubMedCrossRefGoogle Scholar
  40. 40.
    Ushijima T (2007) Epigenetic field for cancerization. J Biochem Mol Biol 40(2):142–150PubMedCrossRefGoogle Scholar
  41. 41.
    Ksiaa F, Ziadi S, Amara K, Korbi S, Trimeche M (2009) Biological significance of promoter hypermethylation of tumor-related genes in patients with gastric carcinoma. Clin Chim Acta 404(2):128–133PubMedCrossRefGoogle Scholar
  42. 42.
    Kim KK, Kim HB (2009) Protein interaction network related to Helicobacter pylori infection response. World J Gastroenterol 15(36):4518–4528PubMedCrossRefGoogle Scholar
  43. 43.
    Sepulveda AR, Yao Y, Yan W, Park DI, Kim JJ, Gooding W, Abudayyeh S, Graham DY (2010) CpG methylation and reduced expression of O6-methylguanine DNA methyltransferase is associated with Helicobacter pylori infection. Gastroenterology 138(5):1836–1844PubMedCrossRefGoogle Scholar
  44. 44.
    Chan AO, Peng JZ, Lam SK, Lai KC, Yuen MF, Cheung HK, Kwong YL, Rashid A, Chan CK, Wong BC (2006) Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut 55(4):463–468PubMedCrossRefGoogle Scholar
  45. 45.
    Kaneda A, Wakazono K, Tsukamoto T, Watanabe N, Yagi Y, Tatematsu M, Kaminishi M, Sugimura T, Ushijima T (2004) Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers. Cancer Res 64(18):6410–6415PubMedCrossRefGoogle Scholar
  46. 46.
    Kaneda A, Kaminishi M, Yanagihara K, Sugimura T, Ushijima T (2002) Identification of silencing of nine genes in human gastric cancers. Cancer Res 62(22):6645–6650PubMedGoogle Scholar
  47. 47.
    Kaneda A, Kaminishi M, Nakanishi Y, Sugimura T, Ushijima T (2002) Reduced expression of the insulin-induced protein 1 and p41 Arp2/3 complex genes in human gastric cancers. Int J Cancer 100(1):57–62PubMedCrossRefGoogle Scholar
  48. 48.
    Hong SJ, Oh JH, Jeon EJ, Min KO, Kang MI, Choi SW, Rhyu MG (2010) The overmethylated genes in Helicobacter pylori-infected gastric mucosa are demethylated in gastric cancers. BMC Gastroenterol 10:137PubMedCrossRefGoogle Scholar
  49. 49.
    Peterson AJ, Menheniott TR, O’Connor L, Walduck AK, Fox JG, Kawakami K, Minamoto T, Ong EK, Wang TC, Judd LM, Giraud AS (2010) H. pylori infection methylates and silences Trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 139(6):2005–2017PubMedCrossRefGoogle Scholar
  50. 50.
    Yan J, Zhang M, Zhang J, Chen X, Zhang X (2011) Helicobacter pylori infection promotes methylation of WWOX gene in human gastric cancer. Biochem Biophys Res Commun 408(1):99–102PubMedCrossRefGoogle Scholar
  51. 51.
    Kang GH, Lee S, Kim JS, Jung HY (2003) Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest 83(5):635–641PubMedCrossRefGoogle Scholar
  52. 52.
    Nakajima T, Yamashita S, Maekita T, Niwa T, Nakazawa K, Ushijima T (2009) The presence of a methylation fingerprint of Helicobacter pylori infection in human gastric mucosae. Int J Cancer 124(4):905–910PubMedCrossRefGoogle Scholar
  53. 53.
    Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 15(7):1968–1976PubMedCrossRefGoogle Scholar
  54. 54.
    Weichert W, Röske A, Gekeler V, Beckers T, Ebert MP, Pross M, Dietel M, Denkert C, Röcken C (2008) Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol 9(2):139–148PubMedCrossRefGoogle Scholar
  55. 55.
    Takahashi H, Murai Y, Tsuneyama K, Nomoto K, Okada E, Fujita H, Takano Y (2006) Overexpression of phosphorylated histone H3 is an indicator of poor prognosis in gastric adenocarcinoma patients. Appl Immunohistochem Mol Morphol 14(3):296–302PubMedCrossRefGoogle Scholar
  56. 56.
    Yoo EJ, Park SY, Cho NY, Kim N, Lee HS, Kang GH (2008) Helicobacter pylori-infection-associated CpG island hypermethylation in the stomach and its possible association with polycomb repressive marks. Virchows Arch 452(5):515–524PubMedCrossRefGoogle Scholar
  57. 57.
    Yamamoto E, Toyota M, Suzuki H, Kondo Y, Sanomura T, Murayama Y, Ohe-Toyota M, Maruyama R, Nojima M, Ashida M, Fujii K, Sasaki Y, Hayashi N, Mori M, Imai K, Tokino T, Shinomura Y (2008) LINE-1 hypomethylation is associated with increased CpG island methylation in Helicobacter pylori-related enlarged-fold gastritis. Cancer Epidemiol Biomarkers 17(10):2555–2564CrossRefGoogle Scholar
  58. 58.
    Hamai Y, Oue N, Mitani Y, Nakayama H, Ito R, Matsusaki K, Yoshida K, Toge T, Yasui W (2003) DNA hypermethylation and histone hypoacetylation of the HLTF gene are associated with reduced expression in gastric carcinoma. Cancer Sci 94(8):692–698PubMedCrossRefGoogle Scholar
  59. 59.
    Mitani Y, Oue N, Hamai Y, Aung PP, Matsumura S, Nakayama H, Kamata N, Yasui W (2005) Histone H3 acetylation is associated with reduced p21(WAF1/CIP1) expression by gastric carcinoma. J Pathol 205(1):65–73PubMedCrossRefGoogle Scholar
  60. 60.
    Xia G, Schneider-Stock R, Diestel A, Habold C, Krueger S, Roessner A, Naumann M, Lendeckel U (2008) Helicobacter pylori regulates p21(WAF1) by histone H4 acetylation. Biochem Biophys Res Commun 369(2):526–531PubMedCrossRefGoogle Scholar
  61. 61.
    Ueno M, Toyota M, Akino K, Suzuki H, Kusano M, Satoh A, Mita H, Sasaki Y, Nojima M, Yanagihara K, Hinoda Y, Tokino T, Imai K (2004) Aberrant methylation and histone deacetylation associated with silencing of SLC5A8 in gastric cancer. Tumour Biol 25(3):134–140PubMedCrossRefGoogle Scholar
  62. 62.
    Tatematsu M, Nozaki K, Tsukamoto T (2003) Helicobacter pylori infection and gastric carcinogenesis in animal models. Gastric Cancer 6(1):1–7PubMedCrossRefGoogle Scholar
  63. 63.
    Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T, Ichinose M, Tatematsu M, Ushijima T (2010) Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res 70(4):1430–1440PubMedCrossRefGoogle Scholar
  64. 64.
    Perri F, Cotugno R, Piepoli A, Merla A, Quitadamo M, Gentile A, Pilotto A, Annese V, Andriulli A (2007) Aberrant DNA methylation in non-neoplastic gastric mucosa of H. pylori infected patients and effect of eradication. Am J Gastroenterol 102(7):1361–1371PubMedCrossRefGoogle Scholar
  65. 65.
    Hur K, Niwa T, Toyoda T, Tsukamoto T, Tatematsu M, Yang HK, Ushijima T (2011) Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation. Carcinogenesis 32(1):35–41PubMedCrossRefGoogle Scholar
  66. 66.
    Niwa T, Ushijima T (2010) Induction of epigenetic alterations by chronic inflammation and its significance on carcinogenesis. Adv Genet 71:41–56PubMedCrossRefGoogle Scholar
  67. 67.
    Pathak SK, Basu S, Bhattacharyya A, Pathak S, Banerjee A, Basu J, Kundu M (2006) TLR4-dependent NF-kappaB activation and mitogen- and stress-activated protein kinase 1-triggered phosphorylation events are central to Helicobacter pylori peptidyl prolyl cis-, trans-isomerase (HP0175)-mediated induction of IL-6 release from macrophages. J Immunol 177(11):7950–7958PubMedGoogle Scholar
  68. 68.
    Hamon MA, Cossart P (2008) Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4(2):100–109PubMedCrossRefGoogle Scholar
  69. 69.
    Angrisano T, Pero R, Peluso S, Keller S, Sacchetti S, Bruni CB, Chiariotti L, Lembo F (2010) LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiol 10:172PubMedCrossRefGoogle Scholar
  70. 70.
    Pero R, Peluso S, Angrisano T, Tuccillo C, Sacchetti S, Keller S, Tomaiuolo R, Bruni CB, Lembo F, Chiariotti L (2011) Chromatin and DNA methylation dynamics of Helicobacter pylori-induced COX-2 activation. Int J Med Microbiol 301(2):140–149PubMedCrossRefGoogle Scholar
  71. 71.
    Angrisano T, Lembo F, Peluso S, Keller S, Chiariotti L, Pero R (2012) Helicobacter pylori regulates iNOS promoter by histone modifications in human gastric epithelial cells. Med Microbiol Immunol 201(3):249–257PubMedCrossRefGoogle Scholar
  72. 72.
    Minárovits J (2009) Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections. A review. Acta Microbiol Immunol Hung 56(1):1–19PubMedCrossRefGoogle Scholar
  73. 73.
    Ding SZ, Fischer W, Kaparakis-Liaskos M, Liechti G, Merrell DS, Grant PA, Ferrero RL, Crowe SE, Haas R, Hatakeyama M, Goldberg JB (2010) Helicobacter pylori-induced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS ONE 5(4):E9875PubMedCrossRefGoogle Scholar
  74. 74.
    Fehri LF, Rechner C, Janssen S, Mak TN, Holland C, Bartfeld S, Brüggemann H, Meyer TF (2009) Helicobacter pylori-induced modification of the histone H3 phosphorylation status in gastric epithelial cells reflects its impact on cell cycle regulation. Epigenetics 4(8):577–586PubMedCrossRefGoogle Scholar
  75. 75.
    Chang YJ, Wu MS, Lin JT, Sheu BS, Muta T, Inoue H, Chen CC (2004) Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol 66(6):1465–1477PubMedCrossRefGoogle Scholar
  76. 76.
    Suganuma M, Kuzuhara T, Yamaguchi K, Fujiki H (2006) Carcinogenic role of tumor necrosis factor-α inducing protein of Helicobacter pylori in human stomach. J Biochem Mol Biol 39(1):1–8PubMedCrossRefGoogle Scholar
  77. 77.
    Buecher B, Bouancheau D, Broquet A, Bezieau S, Denis MG, Bonnet C, Heymann MF, Jarry A, Galmiche JP, Blottière HM (2005) Growth inhibitory effect of celecoxib and rofecoxib on human colorectal carcinoma cell lines. Anticancer Res 25(1A):225–233PubMedGoogle Scholar
  78. 78.
    de Maat MF, van de Velde CJ, Umetani N, de Heer P, Putter H, van Hoesel AQ, Meijer GA, van Grieken NC, Kuppen PJ, Bilchik AJ, Tollenaar RA, Hoon DS (2007) Epigenetic silencing of cyclooxygenase-2 affects clinical outcome in gastric cancer. J Clin Oncol 25(31):4887–4894PubMedCrossRefGoogle Scholar
  79. 79.
    Park GY, Joo M, Pedchenko T, Blackwell TS, Christman JW (2004) Regulation of macrophage cyclooxygenase-2 gene expression by modifications of histone H3. Am J Physiol Lung Cell Mol Physiol 286(5):L956–L962PubMedCrossRefGoogle Scholar
  80. 80.
    Nie M, Pang L, Inoue H, Knox AJ (2003) Transcriptional regulation of cyclooxygenase 2 by bradykinin and interleukin-1beta in human airway smooth muscle cells: involvement of different promoter elements, transcription factors, and histone h4 acetylation. Mol Cell Biol 23(24):9233–9244PubMedCrossRefGoogle Scholar
  81. 81.
    Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):8741–8744Google Scholar
  82. 82.
    Saito Y, Suzuki H, Tsugawa H, Suzuki S, Matsuzaki J, Hirata K, Hibi T (2011) Dysfunctional gastric emptying with down-regulation of muscle-specific microRNAs in Helicobacter pylori-infected mice. Gastroenterology 140(1):189–198PubMedCrossRefGoogle Scholar
  83. 83.
    Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435PubMedGoogle Scholar
  84. 84.
    Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19(6):857–864PubMedCrossRefGoogle Scholar
  85. 85.
    Angrisano T, Sacchetti S, Natale F, Cerrato A, Pero R, Keller S, Peluso S, Perillo B, Avvedimento VE, Fusco A, Bruni CB, Lembo F, Santoro M, Chiariotti L (2011) Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells. Nucleic Acids Res 39(6):1993–2006PubMedCrossRefGoogle Scholar
  86. 86.
    Vitkute J, Stankevicius K, Tamulaitiene G, Maneliene Z, Timinskas A, Berg DE, Janulaitis A (2001) Specificities of eleven different DNA methyltransferases of Helicobacter pylori strain 26695. J Bacteriol 183(2):443–450PubMedCrossRefGoogle Scholar
  87. 87.
    Katayama Y, Takahashi M, Kuwayama H (2009) Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun 388(3):496–500PubMedCrossRefGoogle Scholar
  88. 88.
    Huang FY, Chan AO, Rashid A, Wong DK, Cho CH, Yuen MF (2012) Helicobacter pylori induces promoter methylation of E-cadherin via interleukin-1β activation of nitric oxide production in gastric cancer cells. Cancer (Epub ahead of print)Google Scholar
  89. 89.
    Bussière FI, Michel V, Mémet S, Avé P, Vivas JR, Huerre M, Touati E (2010) H. pylori-induced promoter hypermethylation downregulates USF1 and USF2 transcription factor gene expression. Cell Microbiol 12(8):1124–1133PubMedCrossRefGoogle Scholar
  90. 90.
    Touati E (2010) When bacteria become mutagenic and carcinogenic: lessons from H.pylori. Mutat Res 703(1):66–70PubMedCrossRefGoogle Scholar
  91. 91.
    Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, Kiguchi K, Brenner AJ, Aldaz CM (2001) WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61(22):8068–8073PubMedGoogle Scholar
  92. 92.
    Kangaspeska S, Stride B, Métivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G (2008) Transient cyclical methylation of promoter DNA. Nature 452(7183):112–115PubMedCrossRefGoogle Scholar
  93. 93.
    Métivier R, Gallais R, Tiffoche C, Le Péron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lorenzo Chiariotti
    • 1
    • 2
    Email author
  • Tiziana Angrisano
    • 1
  • Simona Keller
    • 1
    • 2
  • Ermanno Florio
    • 1
  • Ornella Affinito
    • 1
    • 2
  • Pierlorenzo Pallante
    • 1
  • Cinzia Perrino
    • 3
  • Raffaela Pero
    • 1
  • Francesca Lembo
    • 2
    Email author
  1. 1.Dipartimento di Medicina Molecolare e Biotecnologie Mediche and Istituto di Endocrinologia ed Oncologia Molecolare del C.N.RUniversità degli Studi di Napoli Federico IINaplesItaly
  2. 2.Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed ImmunologicheUniversità degli Studi di Napoli Federico IINaplesItaly

Personalised recommendations