Medical Microbiology and Immunology

, Volume 202, Issue 2, pp 143–151 | Cite as

Infection of human brain vascular pericytes (HBVPs) by Bartonella henselae

  • Mrudula Varanat
  • Ricardo G. Maggi
  • Keith E. Linder
  • Edward B. Breitschwerdt
Original Investigation


Angiogenesis is an important physiological and pathological process. Bartonella is the only genus of bacteria known to induce pathological angiogenesis in the mammalian host. Bartonella-induced angiogenesis leads to the formation of vascular tumors including verruga peruana and bacillary angiomatosis. The mechanism of Bartonella-induced angiogenesis is not completely understood. Pericytes, along with endothelial cells, play an important role in physiological angiogenesis, and their role in tumor angiogenesis has been extensively studied. Abnormal signaling between endothelial cells and pericytes contributes to tumor angiogenesis and metastasis; however, the role of pericytes in Bartonella-induced angiogenesis is not known. In this study, after infecting human brain vascular pericytes (HBVPs) with Bartonella henselae, we found that these bacteria were able to invade HBVPs and that bacterial infection resulted in decreased pericyte proliferation and increased pericyte production of vascular endothelial growth factor (VEGF) when compared to the uninfected control cells. In the context of pathological angiogenesis, reduced pericyte coverage, accompanied by increased VEGF production, may promote endothelial cell proliferation and the formation of new vessels.


Blood vessels Bacteria Cytokines Vascular endothelial growth factor Pericyte coverage 



We would like to thank Dr. Maria Correa and Ms. Elizabeth Pultorak for assistance with the statistical analysis, and Dr. Shila Nordone and Ms. Barbara Hegarty for critically reading the manuscript. This study was funded by American Kennel Club-Canine Health Foundation AKORN grant 01531A. We also thank Bayer Animal Health Foundation for providing stipend support for Dr. Mrudula Varanat who was a graduate student in Intracellular Pathogens Laboratory, North Carolina State University at the time this research was performed.


  1. 1.
    Dehio C (2005) Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol 3:621–631PubMedCrossRefGoogle Scholar
  2. 2.
    Ganem D (2010) KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest 120:939–949PubMedCrossRefGoogle Scholar
  3. 3.
    Kontoyiannis DP (2010) Manipulation of host angiogenesis: a critical link for understanding the pathogenesis of invasive mold infections? Virulence 1:192–196PubMedCrossRefGoogle Scholar
  4. 4.
    Koehler JE, Tappero JW (1993) Bacillary angiomatosis and bacillary peliosis in patients infected with human immunodeficiency virus. Clin Infect Dis 17:612–624PubMedCrossRefGoogle Scholar
  5. 5.
    Kempf VA, Volkmann B, Schaller M, Sander CA, Alitalo K, Riess T, Autenrieth IB (2001) Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell Microbiol 3:623–632PubMedCrossRefGoogle Scholar
  6. 6.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309PubMedCrossRefGoogle Scholar
  7. 7.
    Hansen A, Boshoff C, Lagos D (2007) Kaposi sarcoma as a model of oncogenesis and cancer treatment. Expert Rev Anticancer Ther 7:211–220PubMedCrossRefGoogle Scholar
  8. 8.
    Moss SF, Malfertheiner P (2007) Helicobacter and gastric malignancies. Helicobacter 12:23–30PubMedCrossRefGoogle Scholar
  9. 9.
    Lax AJ, Thomas W (2002) How bacteria could cause cancer: one step at a time. Trends Microbiol 10:293–299PubMedCrossRefGoogle Scholar
  10. 10.
    Rudikoff D, Phelps RG, Gordon RE, Battone EJ (1989) Acquired immunodeficiency syndrome-related bacillary vascular proliferation (epithelioid angiomatosis): rapid response to erythromycin therapy. Arch Dermatol 125:706–707PubMedCrossRefGoogle Scholar
  11. 11.
    Breitschwerdt EB, Maggi RG, Varanat M, Linder KE, Weinberg G (2009) Isolation of Bartonella vinsonii subsp. berkhoffii genotype II from a boy with epithelioid hemangioendothelioma and a dog with hemangiopericytoma. J Clin Microbiol 47:1957–1960PubMedCrossRefGoogle Scholar
  12. 12.
    Varanat M, Maggi RG, Linder KE, Breitschwerdt EB (2011) Molecular prevalence of Bartonella, Babesia, and hemotropic Mycoplasma sp. in dogs with splenic disease. J Vet Intern Med 25:1284–1291PubMedCrossRefGoogle Scholar
  13. 13.
    Díaz-Flores L, Gutiérrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martín-Vasallo P, Díaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969PubMedGoogle Scholar
  14. 14.
    Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698PubMedGoogle Scholar
  15. 15.
    Reinmuth N, Liu W, Jung YD, Ahmad SA, Shaheen RM, Fan F, Bucana CD, McMahon G, Gallick GE, Ellis LM (2001) Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J 15:1239–1241PubMedGoogle Scholar
  16. 16.
    Raza A, Franklin MJ, Dudek AZ (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85:593–598PubMedCrossRefGoogle Scholar
  17. 17.
    Maggi RG, Harms CA, Hohn AA, Pabst DA, McLellan WA, Walton WJ, Rotstein DS, Breitschwerdt EB (2005) Bartonella henselae in porpoise blood. Emerg Infect Dis 11:1894–1898PubMedCrossRefGoogle Scholar
  18. 18.
    Breitschwerdt EB, Maggi RG, Duncan AW, Nicholson WL, Hegarty BC, Woods CW (2007) Bartonella species in blood of immunocompetent persons with animal and arthropod contact. Emerg Infect Dis 13:938–941PubMedCrossRefGoogle Scholar
  19. 19.
    Maeno N, Oda H, Yoshiie K, Wahid MR, Fujimura T, Matayoshi S (1999) Live Bartonella henselae enhances endothelial cell proliferation without direct contact. Microb Pathog 27:419–427PubMedCrossRefGoogle Scholar
  20. 20.
    Kirby JE, Nekorchuk DM (2002) Bartonella-associated endothelial proliferation depends on inhibition of apoptosis. Proc Natl Acad Sci USA 99:4656–4661PubMedCrossRefGoogle Scholar
  21. 21.
    McCord AM, Resto-Ruiz SI, Anderson BE (2006) Autocrine role for interleukin-8 in Bartonella henselae-induced angiogenesis. Infect Immun 74:5185–5190PubMedCrossRefGoogle Scholar
  22. 22.
    Dehio C, Meyer M, Berger J, Schwarz H, Lanz C (1997) Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci 110:2141–2154PubMedGoogle Scholar
  23. 23.
    Rhomberg TA, Truttmann MC, Guye P, Ellner Y, Dehio C (2009) A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cell Microbiol 11:927–945PubMedCrossRefGoogle Scholar
  24. 24.
    Kyme PA, Haas A, Schaller M, Peschel A, Iredell J, Kempf VA (2005) Unusual trafficking pattern of Bartonella henselae -containing vacuoles in macrophages and endothelial cells. Cell Microbiol 7:1019–1034PubMedCrossRefGoogle Scholar
  25. 25.
    Diaz-Flores L, Gutierrez R, Varela H (1992) Behavior of postcapillary venule pericytes during postnatal angiogenesis. J Morphol 213:33–45PubMedCrossRefGoogle Scholar
  26. 26.
    Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598PubMedGoogle Scholar
  27. 27.
    Cao Y, Sonveaux P, Liu S, Zhao Y, Mi J, Clary BM, Li CY, Kontos CD, Dewhirst MW (2007) Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67:3835–3844PubMedCrossRefGoogle Scholar
  28. 28.
    Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, Cheresh DA (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813PubMedCrossRefGoogle Scholar
  29. 29.
    Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544PubMedCrossRefGoogle Scholar
  30. 30.
    Yamagishi S, Yonekura H, Yamamoto Y, Fujimori H, Sakurai S, Tanaka N, Yamamoto H (1999) Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Invest 79:501–509PubMedGoogle Scholar
  31. 31.
    Fuhrmann O, Arvand M, Göhler A, Schmid M, Krüll M, Hippenstiel S, Seybold J, Dehio C, Suttorp N (2001) Bartonella henselae induces NF-kappaB-dependent upregulation of adhesion molecules in cultured human endothelial cells: possible role of outer membrane proteins as pathogenic factors. Infect Immun 69:5088–5097PubMedCrossRefGoogle Scholar
  32. 32.
    Cerimele F, Brown LF, Bravo F, Ihler GM, Kouadio P, Arbiser JL (2003) Infectious angiogenesis: Bartonella bacilliformis infection results in endothelial production of angiopoietin-2 and epidermal production of vascular endothelial growth factor. Am J Pathol 163:1321–1327PubMedCrossRefGoogle Scholar
  33. 33.
    Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376PubMedGoogle Scholar
  34. 34.
    Johnson GK, Guthmiller JM, Joly S, Organ CC, Dawson DV (2010) Interleukin-1 and interleukin-8 in nicotine- and lipopolysaccharide-exposed gingival keratinocyte cultures. J Periodontal Res 45:583–588PubMedGoogle Scholar
  35. 35.
    Matera G, Liberto MC, Quirino A, Barreca GS, Lamberti AG, Iannone M, Mancuso E, Palma E, Cufari FA, Rotiroti D, Focà A (2003) Bartonella quintana lipopolysaccharide effects on leukocytes, CXC chemokines and apoptosis: a study on the human whole blood and a rat model. Int Immunopharmacol 3:853–864PubMedCrossRefGoogle Scholar
  36. 36.
    Schülein R, Seubert A, Gille C, Lanz C, Hansmann Y, Piémont Y, Dehio C (2001) Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J Exp Med 193:1077–1086PubMedCrossRefGoogle Scholar
  37. 37.
    Gengler C, Guillou L (2006) Solitary fibrous tumour and haemangiopericytoma: evolution of a concept. Histopathology 48:63–74PubMedCrossRefGoogle Scholar
  38. 38.
    Fletcher CD (2006) The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 48:3–12PubMedCrossRefGoogle Scholar
  39. 39.
    Koch M, Nielsen GP, Yoon SS (2008) Malignant tumors of blood vessels: angiosarcomas, hemangioendotheliomas, and hemangioperictyomas. J Surg Oncol 97:321–329PubMedCrossRefGoogle Scholar
  40. 40.
    Beerlage C, Varanat M, Linder K, Maggi RG, Cooley J, Kempf VA, Breitschwerdt EB (2012) Bartonella vinsonii subsp. berkhoffii and Bartonella henselae as potential causes of proliferative vascular diseases in animals. Med Microbiol Immunol. Published online 27 March 2012Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mrudula Varanat
    • 1
  • Ricardo G. Maggi
    • 1
  • Keith E. Linder
    • 1
  • Edward B. Breitschwerdt
    • 1
  1. 1.Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA

Personalised recommendations