Medical Microbiology and Immunology

, Volume 201, Issue 3, pp 371–379 | Cite as

Herpes simplex virus type 1 induces simultaneous activation of Toll-like receptors 2 and 4 and expression of the endogenous ligand serum amyloid A in astrocytes

  • Melina Villalba
  • Melissa Hott
  • Carolina Martin
  • Blanca Aguila
  • Sharin Valdivia
  • Claudia Quezada
  • Ángara Zambrano
  • Margarita I. Concha
  • Carola Otth
Original Investigation

Abstract

Herpes simplex virus type 1 (HSV-1) is the most common pathogenic cause of sporadic acute encephalitis and it produces latent persistent infection lifelong in infected individuals. Brain inflammation is associated with activation of glial cells, which can detect pathogen-associated molecular patterns (PAMPs) through a variety of pattern-recognition receptors (PRR), including Toll-like receptors (TLRs). In this study, we evaluated the expression and activation of TLR2, TLR3, and TLR4 in HSV-1-infected astrocyte and neuronal primary cultures. Our results showed a clear induction in TLR2 and TLR4 expression in astrocytes as early as 1 h after HSV-1 infection, whereas no significant change was observed in neurons. In addition, infected astrocytes showed increased levels of interferon regulatory factors IRF3 and IRF7, interferon β (INFβ), interleukin 6 (IL6), and serum amyloid A (SAA3) transcripts, as well as phospho-IRF3 protein. These effects seemed to be dependent on viral replication since previous treatment of the cells with acyclovir resulted in low levels of TLRs expression and activation even after 4 h post-infection. These results suggest that reactivation of HSV-1 at the central nervous system (CNS) would likely induce and activate TLR2 and TLR4 receptors directly through interaction of astrocytes with the pathogen and also indirectly by endogenous ligands produced locally, such as serum amyloid protein, potentiating the neuroinflammatory response.

Keywords

HSV-1 TLRs A-SAA SAA3 Interferon 

Notes

Acknowledgments

The study was supported by Fondecyt Project 11080067 and DID-UACH S-2009-40.

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

430_2012_247_MOESM1_ESM.doc (1017 kb)
Supplementary material 1 (DOC 1,017 kb)

References

  1. 1.
    Wozniak MA, Shipley SJ, Combrinck M, Wilcock GK, Itzhaki RF (2005) Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients. J Med Virol 75(2):300–306PubMedCrossRefGoogle Scholar
  2. 2.
    Letenneur L, Pérès K, Fleury H, Garrigue I, Barberger-Gateau P, Helmer C, Orgogozo JM, Gauthier S, Dartigues JF (2008) Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS ONE 3(11):e3637. doi: 10.1371/journal.pone.0003637 PubMedCrossRefGoogle Scholar
  3. 3.
    Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 349(9047):241–244PubMedCrossRefGoogle Scholar
  4. 4.
    Itzhaki RF, Wozniak MA (2006) Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer’s disease and other disorders. Prog Lipid Res 45(1):73–90PubMedCrossRefGoogle Scholar
  5. 5.
    Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ (2004) Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging 25(5):619–627PubMedCrossRefGoogle Scholar
  6. 6.
    Dobson CB, Wozniak MA, Itzhaki RF (2003) Do infectious agents play a role in dementia? Trends Microbiol 11(7):312–317PubMedCrossRefGoogle Scholar
  7. 7.
    Zambrano A, Solis L, Salvadores N, Cortés M, Lerchundi R, Otth C (2008) Neuronal cytoskeletal dynamic modification and neurodegeneration induced by infection with herpes simplex virus type 1. J Alzheimer Dis 14(3):1–11Google Scholar
  8. 8.
    Otth C, Zambrano A, Concha M (2009) The possible link between herpes simplex virus type 1 infection and neurodegeneration. In: Maccioni RB, Perry G (eds) Current hypotheses and research Milestones in Alzheimer’s disease. Springer, New York, pp 181–188. ISBN 978-0-387-87994-9Google Scholar
  9. 9.
    Lerchundi R, Neira R, Valdivia S, Vio K, Concha MI, Zambrano A, Otth C (2011) Tau cleavage at D421 by caspase-3 is induced in neurons and astrocytes infected with Herpes Simplex Virus type 1. J Alzheimer Dis 23(3):513–520Google Scholar
  10. 10.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801PubMedCrossRefGoogle Scholar
  11. 11.
    Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20(6):947–956PubMedCrossRefGoogle Scholar
  12. 12.
    He RL, Zhou J, Hanson CZ, Chen J, Cheng N, Ye RD (2009) Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood 113(2):429–437PubMedCrossRefGoogle Scholar
  13. 13.
    Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A (2008) Is serum amyloid A an endogenous TLR4 agonist? J Leukoc Biol 83(5):1174–1180PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng N, He R, Tian J, Ye PP, Ye RD (2008) Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J Immunol 181(1):22–26PubMedGoogle Scholar
  15. 15.
    Liang JS, Sloane JA, Wells JM, Abraham CR, Fine RE, Sipe JD (1997) Evidence for local production of acute phase response apolipoprotein serum amyloid A in Alzheimer’s disease brain. Neurosci Lett 225(2):73–76PubMedCrossRefGoogle Scholar
  16. 16.
    Kindy MS, Yu J, Guo JT, Zhu H (1999) Apolipoprotein serum amyloid A in Alzheimer’s disease. J Alzheimer Dis 1(3):155–167Google Scholar
  17. 17.
    Chung TF, Sipe JD, McKee A, Fine RE, Schreiber BM, Liang JS, Johnson RJ (2000) Serum amyloid A in Alzheimer’s disease brain is predominantly localized to myelin sheaths and axonal membrane. Amyloid 7(2):105–110PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu J, Mohan C (2010) Toll-like receptor signaling pathways-therapeutic opportunities. Mediat Inflamm. doi: 10.1155/2010/781235
  19. 19.
    Castro MA, Pozo M, Cortés C, García M, Concha II, Nualart F (2007) Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes. J Neurochem 102(3):773–782PubMedCrossRefGoogle Scholar
  20. 20.
    Otth C, Torres M, Ramirez A, Fernandez JC, Castro M, Rauch MC, Brito M, Yanez AJ, Rodriguez-Gil JE, Slebe JC, Concha II (2007) Novel identification of peripheral dopaminergic D2 receptor in male germ cells. J Cell Biochem 100(1):141–150PubMedCrossRefGoogle Scholar
  21. 21.
    Du F, Qian ZM, Zhu L, Wu XM, Qian C, Chan R, Ke Y (2010) Purity, cell viability, expression of GFAP and bystin in astrocytes cultured by different procedures. J Cell Biochem 109(1):30–37PubMedGoogle Scholar
  22. 22.
    Hua F, Ma J, Ha T, Kelley JL, Kao RL, Schweitzer JB, Kalbfleisch JH, Williams DL, Li C (2009) Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res 1262:100–108PubMedCrossRefGoogle Scholar
  23. 23.
    Hyakkoku K, Hamanaka J, Tsuruma K, Shimazawa M, Tanaka H, Uematsu S, Akira S, Inagaki N, Nagai H, Hara H (2010) Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171(1):258–267PubMedCrossRefGoogle Scholar
  24. 24.
    Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR (2005) Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175(7):4189–4193PubMedGoogle Scholar
  25. 25.
    Wang JP, Bowen GN, Zhou S, Cerny A, Zacharia A, Knipe DM, Finberg RW, Kurt-Jones EA (2012) Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J Virol 86(4):2273–2281PubMedCrossRefGoogle Scholar
  26. 26.
    Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13(5):816–825PubMedCrossRefGoogle Scholar
  27. 27.
    Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59(2):278–292PubMedCrossRefGoogle Scholar
  28. 28.
    Tsitoura E, Thomas J, Cuchet D, Thoinet K, Mavromara P, Epstein AL (2009) Infection with herpes simplex type 1-based amplicon vectors results in an IRF3/7-dependent, TLR-independent activation of the innate antiviral response in primary human fibroblasts. J Gen Virol 90(Pt 9):2209–2220PubMedCrossRefGoogle Scholar
  29. 29.
    Collins SE, Noyce RS, Mossman KL (2004) Innate cellular response to virus particle entry requires IRF3 but not virus replication. J Virol 78(4):1706–1717PubMedCrossRefGoogle Scholar
  30. 30.
    Noyce RS, Collins SE, Mossman KL (2009) Differential modification of interferon regulatory factor 3 following virus particle entry. J Virol 83(9):4013–4422PubMedCrossRefGoogle Scholar
  31. 31.
    Paladino P, Cummings DT, Noyce RS, Mossman KL (2006) The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. J Immunol 177(11):8008–8016PubMedGoogle Scholar
  32. 32.
    Rasmussen SB, Sørensen LN, Malmgaard L, Ank N, Baines JD, Chen ZJ, Paludan SR (2007) Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems. J Virol 81(24):13315–13324PubMedCrossRefGoogle Scholar
  33. 33.
    Niemi K, Teirilä L, Lappalainen J, Rajamäki K, Baumann MH, Öörni K, Wolff H, Kovanen PT, Matikainen S, Eklund KK (2011) Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and cathepsin B-sensitive pathway. J Immunol 186(11):61119–66128CrossRefGoogle Scholar
  34. 34.
    Chiba T, Han CY, Vaisar T, Shimokado K, Kargi A, Chen MH, Wang S, McDonald TO, O’Brien KD, Heinecke JW, Chait A (2009) Serum amyloid A3 does not contribute to circulating SAA levels. J Lipid Res 50(7):1353–1362PubMedCrossRefGoogle Scholar
  35. 35.
    Reigstad CS, Bäckhed F (2010) Microbial regulation of SAA3 expression in mouse colon and adipose tissue. Gut Microbes 1(1):55–57PubMedCrossRefGoogle Scholar
  36. 36.
    Conde J, Gomez R, Bianco G, Scotese M, Lear P, Dieguez C, Gomez-Reino J, Lago F, Gualillo O (2011) Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes. Ann Rheum Dis 70(3):551–559Google Scholar
  37. 37.
    Ather JL, Ckless K, Martin R, Foley KL, Suratt BT, Boyson JE, Fitzgerald KA, Flavell RA, Eisenbarth SC, Poynter ME (2011) Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J Immunol 187(1):64–73PubMedCrossRefGoogle Scholar
  38. 38.
    Ridder DA, Bulashevska S, Chaitanya GV, Babu PP, Brors B, Eils R, Schneider A, Schwaninger M (2009) Discovery of transcriptional programs in cerebral ischemia by in silico promoter analysis. Brain Res 1272:3–13PubMedCrossRefGoogle Scholar
  39. 39.
    Ejarque-Ortíz A, Medina MG, Tusell JM, Pérez-González AP, Serratosa J, Saura J (2007) Upregulation of CCAAT/enhancer binding protein β in activated astrocytes and microglia. Glia 55(2):178–188PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Melina Villalba
    • 1
  • Melissa Hott
    • 1
  • Carolina Martin
    • 1
  • Blanca Aguila
    • 1
  • Sharin Valdivia
    • 1
  • Claudia Quezada
    • 2
    • 3
  • Ángara Zambrano
    • 2
  • Margarita I. Concha
    • 2
  • Carola Otth
    • 1
    • 3
  1. 1.Instituto de Microbiología Clínica, Facultad de MedicinaUniversidad Austral de ChileValdiviaChile
  2. 2.Instituto de Bioquímica y Microbiología, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  3. 3.Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso (CISNE)Universidad Austral de ChileValdiviaChile

Personalised recommendations