Medical Microbiology and Immunology

, Volume 201, Issue 1, pp 25–35 | Cite as

The protective Th1 response in mice is induced in the T-cell zone only three weeks after infection with Leishmania major and not during early T-cell activation

  • Julia Barthelmann
  • Julia Nietsch
  • Maike Blessenohl
  • Tamas Laskay
  • Ger van Zandbergen
  • Jürgen Westermann
  • Kathrin KaliesEmail author
Original Investigation


The protozoan parasite Leishmania spp. causes clinical pictures ranging in severity from spontaneously healing skin ulcers to systemic disease. The immune response associated with healing involves the differentiation of IFNγ-producing Th1 cells, whereas the non-healing phenotype is associated with IL4-producing Th2 cells. The widespread assumption has been that the T-cell differentiation that leads to a healing or non-healing phenotype is established at the time of T-cell activation early after infection. By selectively analyzing the expression of cytokine genes in the T-cell zones of lymph nodes of resistant (Th1) C57BL/6 mice and susceptible (Th2) BALB/c mice during an infection with Leishmania major in vivo, we show that the early T-cell response does not differ between C57BL/6 mice and BALB/c mice. Instead, Th1/Th2 polarization appears suddenly 3 weeks after infection. At the same time point, the number of parasites increases in lymph nodes of both mouse strains, but about 100-fold more in susceptible BALB/c mice. We conclude that the protective Th1 response in C57BL/6 mice is facilitated by the capacity of their innate effector cells to keep parasite numbers at low levels.


Leishmania major infection Th1/Th2 cell response In vivo laser microdissection 



We thank L. Gutjahr, P. Lau, M.-L. Leppin, K. von Lingelsheim, and S. Möller for technical assistance. Supported by the Deutsche Forschungsgemeinschaft (SFB 654, C4) and the Excellence Cluster “Inflammation at Interfaces” (DFG EXC 306/1) (to JW).

Supplementary material

430_2011_201_MOESM1_ESM.doc (76 kb)
Supplementary material 1 (DOC 75 kb)


  1. 1.
    Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845–858PubMedCrossRefGoogle Scholar
  2. 2.
    Scott P, Artis D, Uzonna J, Zaph C (2004) The development of effector and memory T cells in cutaneous leishmaniasis: the implications for vaccine development. Immunol Rev 201:318–338PubMedCrossRefGoogle Scholar
  3. 3.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  4. 4.
    Moll H, Rollinghoff M (1990) Resistance to murine cutaneous leishmaniasis is mediated by TH1 cells, but disease-promoting CD4 + cells are different from TH2 cells. Eur J Immunol 20:2067–2074PubMedCrossRefGoogle Scholar
  5. 5.
    Scott P (1991) IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol 147:3149–3155PubMedGoogle Scholar
  6. 6.
    Carrera L, Gazzinelli RT, Badolato R, Hieny S, Muller W et al (1996) Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med 183:515–526PubMedCrossRefGoogle Scholar
  7. 7.
    Reiner SL, Zheng S, Wang ZE, Stowring L, Locksley RM (1994) Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4 + T cells during initiation of infection. J Exp Med 179:447–456PubMedCrossRefGoogle Scholar
  8. 8.
    von Stebut E, Belkaid Y, Nguyen BV, Cushing M, Sacks DL et al (2000) Leishmania major-infected murine langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous Leishmaniasis. Eur J Immunol 30:3498–3506CrossRefGoogle Scholar
  9. 9.
    Biedermann T, Zimmermann S, Himmelrich H, Gumy A, Egeter O et al (2001) IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2:1054–1060PubMedCrossRefGoogle Scholar
  10. 10.
    Scott P, Eaton A, Gause WC, di Zhou X, Hondowicz B (1996) Early IL-4 production does not predict susceptibility to Leishmania major. Exp Parasitol 84:178–187PubMedCrossRefGoogle Scholar
  11. 11.
    Stetson DB, Mohrs M, Mallet-Designe V, Teyton L, Locksley RM (2002) Rapid expansion and IL-4 expression by Leishmania-specific naive helper T cells in vivo. Immunity 17:191–200PubMedCrossRefGoogle Scholar
  12. 12.
    Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM (1989) Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 169:59–72PubMedCrossRefGoogle Scholar
  13. 13.
    Morris L, Troutt AB, Handman E, Kelso A (1992) Changes in the precursor frequencies of IL-4 and IFN-gamma secreting CD4 + cells correlate with resolution of lesions in murine cutaneous leishmaniasis. J Immunol 149:2715–2721PubMedGoogle Scholar
  14. 14.
    Tabbara KS, Peters NC, Afrin F, Mendez S, Bertholet S et al (2005) Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun 73:4714–4722PubMedCrossRefGoogle Scholar
  15. 15.
    Roth A, Konig P, van Zandbergen G, Klinger M, Hellwig-Burgel T et al (2010) Hypoxia abrogates antichlamydial properties of IFN-gamma in human fallopian tube cells in vitro and ex vivo. Proc Natl Acad Sci USA 107:19502–19507PubMedCrossRefGoogle Scholar
  16. 16.
    Yang M, Ma C, Liu S, Shao Q, Gao W et al (2010) HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 88:165–171PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang X, Brunner T, Carter L, Dutton RW, Rogers P et al (1997) Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J Exp Med 185:1837–1849PubMedCrossRefGoogle Scholar
  18. 18.
    Laskay T, Diefenbach A, Rollinghoff M, Solbach W (1995) Early parasite containment is decisive for resistance to Leishmania major infection. Eur J Immunol 25:2220–2227PubMedCrossRefGoogle Scholar
  19. 19.
    van Zandbergen G, Bollinger A, Wenzel A, Kamhawi S, Voll R et al (2006) Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. Proc Natl Acad Sci USA 103:13837–13842PubMedCrossRefGoogle Scholar
  20. 20.
    Kalies K, Blessenohl M, Nietsch J, Westermann J (2006) T cell zones of lymphoid organs constitutively express Th1 cytokine mRNA: specific changes during the early phase of an immune response. J Immunol 176:741–749PubMedGoogle Scholar
  21. 21.
    Kalies K, Konig P, Zhang YM, Deierling M, Barthelmann J et al (2008) Nonoverlapping expression of IL10, IL12p40, and IFNgamma mRNA in the marginal zone and T cell zone of the spleen after antigenic stimulation. J Immunol 180:5457–5465PubMedGoogle Scholar
  22. 22.
    Bretagne S, Durand R, Olivi M, Garin JF, Sulahian A et al (2001) Real-time PCR as a new tool for quantifying Leishmania infantum in liver in infected mice. Clin Diagn Lab Immunol 8:828–831PubMedGoogle Scholar
  23. 23.
    Nicolas L, Prina E, Lang T, Milon G (2002) Real-time PCR for detection and quantitation of leishmania in mouse tissues. J Clin Microbiol 40:1666–1669PubMedCrossRefGoogle Scholar
  24. 24.
    Lagrange PH, Mackaness GB, Miller TE (1974) Influence of dose and route of antigen injection on the immunological induction of T cells. J Exp Med 139:528–542PubMedCrossRefGoogle Scholar
  25. 25.
    Parish CR (1971) Immune response to chemically modified flagellin. II. Evidence for a fundamental relationship between humoral and cell-mediated immunity. J Exp Med 134:21–47PubMedCrossRefGoogle Scholar
  26. 26.
    Chatelain R, Varkila K, Coffman RL (1992) IL-4 induces a Th2 response in Leishmania major-infected mice. J Immunol 148:1182–1187PubMedGoogle Scholar
  27. 27.
    Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS et al (1990) Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med 171:115–127PubMedCrossRefGoogle Scholar
  28. 28.
    Smith KM, Brewer JM, Mowat AM, Ron Y, Garside P (2004) The influence of follicular migration on T-cell differentiation. Immunology 111:248–251PubMedCrossRefGoogle Scholar
  29. 29.
    Junt T, Scandella E, Ludewig B (2008) Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 8:764–775PubMedCrossRefGoogle Scholar
  30. 30.
    Sommer F, Meixner M, Mannherz M, Ogilvie AL, Rollinghoff M et al (1998) Analysis of cytokine patterns produced by individual CD4 + lymph node cells during experimental murine leishmaniasis in resistant and susceptible mice. Int Immunol 10:1853–1861PubMedCrossRefGoogle Scholar
  31. 31.
    Colpitts SL, Scott P (2010) The early generation of a heterogeneous CD4 + T cell response to Leishmania major. J Immunol 185:2416–2423PubMedCrossRefGoogle Scholar
  32. 32.
    Revest M, Donaghy L, Cabillic F, Guiguen C, Gangneux JP (2008) Comparison of the immunomodulatory effects of L. donovani and L. major excreted-secreted antigens, particulate and soluble extracts and viable parasites on human dendritic cells. Vaccine 26:6119–6123PubMedCrossRefGoogle Scholar
  33. 33.
    Santarem N, Silvestre R, Tavares J, Silva M, Cabral S et al (2007) Immune response regulation by leishmania secreted and nonsecreted antigens. J Biomed Biotechnol 2007:85154PubMedCrossRefGoogle Scholar
  34. 34.
    Reina-San-Martin B, Cosson A, Minoprio P (2000) Lymphocyte polyclonal activation: a pitfall for vaccine design against infectious agents. Parasitol Today 16:62–67PubMedCrossRefGoogle Scholar
  35. 35.
    Baldwin T, Henri S, Curtis J, O’Keeffe M, Vremec D et al (2004) Dendritic cell populations in Leishmania major-infected skin and draining lymph nodes. Infect Immun 72:1991–2001PubMedCrossRefGoogle Scholar
  36. 36.
    Leon B, Lopez-Bravo M, Ardavin C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519–531PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Julia Barthelmann
    • 1
  • Julia Nietsch
    • 1
  • Maike Blessenohl
    • 1
  • Tamas Laskay
    • 2
  • Ger van Zandbergen
    • 2
    • 3
  • Jürgen Westermann
    • 1
  • Kathrin Kalies
    • 1
    Email author
  1. 1.Center for Structural and Cell Biology in Medicine, Institute of AnatomyUniversity of LübeckLübeckGermany
  2. 2.Institute for Medical Microbiology and HygieneUniversity of LübeckLübeckGermany
  3. 3.Department of Medical Microbiology and HygieneUniversity of UlmUlmGermany

Personalised recommendations