Skip to main content

Advertisement

Log in

Monitoring prevalence of varicella-zoster virus clades in Germany

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The global surveillance of varicella-zoster virus (VZV) clades is an important tool for investigation into viral evolution, host-virus interactions, role of immigration and travel for importation of viral strains as well as possible recombination events between wild- and vaccine-type VZV strains. In this prospective study, comprehensive data on the current distribution of VZV clades in Germany were collected. VZV strains from 213 patients with varicella and 109 with zoster were genotyped using the scattered single-nucleotide polymorphism method on the basis of sequencing open reading frames 1, 21, 22, 37, 50, 54 and 60. In varicella, clade 3 was detected in 45.5%, clade 1 in 30.0%, clade 5 in 21.1% and clade 2 in 0.9% of the cases. The analysis of zoster strains revealed clade 3 in 50.5%, clade 1 in 46.8%, clade 2 and clade 4 in 0.9% of the cases each. Five strains from varicella and one strain from zoster could not be attributed to any of the major and provisional VZV clades. Statistical analysis verified significantly lower frequency of clade 1 and significantly higher frequency of clade 5 in patients with varicella compared to zoster. In addition, varicella patients with clade 5 strains were significantly younger than the patients with clade 3. In conclusion, almost one half of VZV infections in Germany were caused currently by VZV clade 3. In primary VZV infection, nearly 20% of clade 1 has been replaced by clade 5 that might spread more effectively in the population than the European VZV clades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gershon A, Mervish N, LaRussa P, Steinberg S, Lo SH, Hodes D, Fikrig S, Bonagura V, Bakshi S (1997) Varicella-zoster virus infection in children with underlying HIV infection. J Infect 176:1496–1500

    Article  CAS  Google Scholar 

  2. Salleras L, Domínguez A, Plans P, Costa J, Cardeñosa N, Torner N, Plasència A (2008) Seroprevalence of varicella zoster virus infection in child and adult population of Catalonia (Spain). Med Microbiol Immunol 197:329–333

    Article  PubMed  Google Scholar 

  3. Wicker S, Rabenau HF, Gottschalk R, Doerr HW, Allwin R (2007) Seroprevalence of vaccine preventable and blood transmissible viral infections (measles, mumps, rubella, polio, HBV, HCV and HIV) in medical students. Med Microbiol Immunol 196:145–150

    Article  PubMed  Google Scholar 

  4. Wutzler P, Färber I, Wagenpfeil S, Bisanz H, Tischer A (2001) Seroprevalence of varicella-zoster virus in the German population. Vaccine 20:121–124

    Article  PubMed  CAS  Google Scholar 

  5. Lokeshwar MR, Agrawal A, Subbarao SD, Chakraborty MS, Ram Prasad AV, Weil J, Bock HL, Kanwal S, Shah RC, Shah N (2000) Age related seroprevalence of antibodies to varicella in India. Indian Pediatr 37:714–719

    PubMed  CAS  Google Scholar 

  6. Barrett-Muir W, Scott FT, Aaby P, John J, Matondo P, Chaudhry QL, Siqueira M, Poulsen A, Yamanishi K, Breuer J (2003) Genetic variation of varicella-zoster virus: evidence for geographical separation of strains. J Med Virol 70:S42–S47

    Article  PubMed  CAS  Google Scholar 

  7. Loparev V, Martro E, Rubtcova E, Rodrigo C, Piette JC, Caumes E, Vernant JP, Schmid DS, Fillet AM (2007) Toward universal varicella-zoster virus (VZV) genotyping: diversity of VZV strains from France and Spain. J Clin Microbiol 45:559–563

    Article  PubMed  CAS  Google Scholar 

  8. Quinlivan M, Hawrami K, Barrett-Muir W, Aaby P, Arvin A, Chow VT, John TJ, Matondo P, Peiris M, Poulsen A, Siqueira M, Takahashi M, Talukder Y, Yamanishi K, Leedham-Green M, Scott FT, Thomas SL, Breuer J (2002) The molecular epidemiology of varicella-zoster virus: evidence for geographic segregation. J Infect Dis 186:888–894

    Article  PubMed  CAS  Google Scholar 

  9. Bonanni P, Breuer J, Gershon A, Gershon M, Hryniewicz W, Papaevangelou V, Rentier B, Rümke H, Sadzot-Delvaux C, Senterre J, Weil-Oliver C, Wutzler P (2009) Varicella vaccination in Europe—taking the practical approach. BMC Medicine 7:26

    Article  PubMed  Google Scholar 

  10. Uebe B, Sauerbrei A, Burdach S, Horneff G (2002) Herpes zoster by reactivated vaccine varicella-zoster virus in a healthy child. Eur J Pediatr 161:442–444

    Article  PubMed  Google Scholar 

  11. Quinlivan M, Breuer J (2006) Molecular studies of varicella-zoster virus. Rev Med Virol 16:225–250

    Article  PubMed  CAS  Google Scholar 

  12. Breuer J, Grose C, Norberg P, Tipples G, Schmid DS (2010) A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry. J Gen Virol 91:821–828

    Article  PubMed  CAS  Google Scholar 

  13. Sauerbrei A, Zell R, Philipps A, Wutzler P (2008) Genotypes of varicella-zoster virus wild-type strains in Germany. J Med Virol 80:1123–1130

    Article  PubMed  CAS  Google Scholar 

  14. Puchhammer-Stöckl E, Popow-Kraupp T, Heinz FX, Mandl CW, Kunz C (1991) Detection of varicella-zoster virus DNA by polymerase chain reaction in the cerebrospinal fluid of patients suffering neurological complications associated with chicken pox or herpes zoster. J Clin Microbiol 29:1513–1516

    PubMed  Google Scholar 

  15. Sauerbrei A, Eichhorn U, Schacke M, Wutzler P (1999) Laboratory diagnosis of herpes zoster. J Clin Virol 14:31–36

    Article  PubMed  CAS  Google Scholar 

  16. Sauerbrei A, Philipps A, Zell R, Wutzler P (2007) Genotyping of varicella-zoster virus strains after serial passages in cell culture. J Virol Methods 145:80–83

    Article  PubMed  CAS  Google Scholar 

  17. Sauerbrei A, Eichhorn U, Gawellek S, Egerer R, Schacke M, Wutzler P (2003) Characterisation of varicella-zoster virus strains in Germany and differentiation from the Oka vaccine strain. J Med Virol 71:313–319

    Article  PubMed  CAS  Google Scholar 

  18. Loparev VN, Rubtcova EN, Bostik V, Tzaneva V, Sauerbrei A, Robo A, Sattler-Dornbacher E, Hanovcova I, Stepanova V, Splino M, Eremin V, Koskiniemi M, Vankova OE, Schmid DS (2009) Distribution of varicella-zoster virus (VZV) wild type genotypes in northern and southern Europe: evidence for high conservation of circulating genotypes. Virology 383:216–225

    Article  PubMed  CAS  Google Scholar 

  19. Ständige Impfkommission am Robert Koch-Institut (2004) Empfehlungen der Ständigen Impfkommission (STIKO) am Robert Koch-Institut/Stand. Epidemiol Bull 30:235–250

    Google Scholar 

  20. Schmidt-Chanasit J, Stürmer M, Hahn A, Schäd SG, Gross G, Ulrich RG, Heckel G, Doerr HW (2007) Novel genotyping approach for varicella-zoster virus strains from Germany. J Clin Microbiol 45:3540–3545

    Article  PubMed  CAS  Google Scholar 

  21. Barrett-Muir W, Nichols R, Breuer J (2002) Phylogenetic analysis of varicella-zoster virus: evidence variation of varicella-zoster virus: evidence of intercontinental spread of genotypes and recombination. J Virol 76:1971–1979

    Article  Google Scholar 

  22. Carr MJ, McCormack GP, Crowley B (2004) Genetic variation in clinical varicella-zoster virus isolates collected in Ireland between 2002 and 2003. J Med Virol 73:131–136

    Article  PubMed  CAS  Google Scholar 

  23. Loparev VN, Gonzalez A, Deleon-Carnes M, Tipples G, Fickenscher H, Torfason EG, Schmid DS (2004) Global identification of three major genotypes of varicella-zoster virus: longitudinal clustering and strategies for genotyping. J Virol 78:8349–8358

    Article  PubMed  CAS  Google Scholar 

  24. Wagenaar TR, Chow VT, Buranathai C, Thawatsupha P, Grose C (2003) The out of Africa model of varicella-zoster virus evolution: single nucleotide polymorphisms and private alleles distinguish Asian clades from European/North American clades. Vaccine 21:1072–1081

    Article  PubMed  CAS  Google Scholar 

  25. Loparev VN, Rubtcova EN, Bostik V, Govil D, Birch CJ, Druce JC, Schmid DS, Croxson MC (2007) Identification of five major and two minor genotypes of varicella-zoster virus strains: a practical two-amplicon approach used to genotype clinical isolates in Australia and New Zealand. J Virol 81:12758–12765

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt-Chanasit J, Ölschläger S, Bialonski A, Heinemann P, Bleymehl K, Gross G, Günther S, Ulrich RG, Doerr HW (2009) Novel approach to differentiate subclades of varicella-zoster virus genotypes E1 and E2 in Germany. Virus Res 145:347–349

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt-Chanasit J, Olschläger S, Günther S, Govil D, Birch CJ, Druce JC, Schmid DS, Croxson MC (2008) Molecular analysis of varicella-zoster virus strains circulating in Tanzania demonstrating the presence of genotype M1. J Clin Microbiol 46:3530–3533

    Article  PubMed  CAS  Google Scholar 

  28. Sengupta N, Taha Y, Scott FT, Leedham-Green E, Quinlivan M, Breuer J (2007) Varicella-zoster virus genotypes in East London: a prospective study in patients with herpes zoster. J Infect Dis 196:1014–1020

    Article  PubMed  CAS  Google Scholar 

  29. Kelm S, Bierbach U, Sauerbrei A, Schuster V (2010) Herpes Zoster bei einem VZV-geimpften Kleinkind mit akuter myeloischer Leukämie: Nachweis des VZV-Oka-Impfstammes in den Zoster-Hauteffloreszenzen. Kinder- und Jugendmedizin 10:141–144

    Google Scholar 

  30. LaRussa P, Lungu O, Hardy I, Gershon A, Steinberg SP, Silverstein S (1992) Restriction fragment length polymorphism of polymerase chain reaction products from vaccine and wild-type varicella-zoster virus isolates. J Virol 66:1016–1020

    PubMed  CAS  Google Scholar 

  31. Loparev VN, Argaw T, Krause PR, Takayama M, Schmid DS (2000) Improved identification and differentiation of varicella-zoster virus (VZV) wild-type strains and an attenuated varicella vaccine strain using a VZV open reading frame 62- based PCR. J Clin Microbiol 38:3156–3160

    PubMed  CAS  Google Scholar 

  32. Hambleton S, Gershon AA (2005) Preventing varicella-zoster disease. Clin Microb Rev 18:70–80

    Article  Google Scholar 

  33. Lamberti C, Weller SK (1996) The herpes simplex virus type 1 UL6 protein is essential for cleavage and packaging but not for genomic inversion. Virology 15:403–407

    Article  Google Scholar 

  34. Visalli R, Fairhurst J, Srinivas S, Hu W, Feld B, DiGrandi M, Curran K, Ross A, Bloom JD, van Zeijl M, Jones TR, O’Connell J, Cohen JI (2003) Identification of small molecule compounds that selectively inhibit varicella-zoster virus replication. J Virol 77:2349–2358

    Article  PubMed  CAS  Google Scholar 

  35. Toi CS, Dwyer DE (2010) Prevalence of varicella-zoster virus genotypes in Australia characterized by HRMA and ORF22 gene analyses. J Med Microbiol 59:935–940

    Article  PubMed  CAS  Google Scholar 

  36. Sergeev N, Rubtcova E, Chizikov V, Schmid DS, Loparev VN (2006) New mosaic subgenotype of varicella-zoster virus in the USA: VZV detection and genotyping by oligonucleotide-microarray. J Virol Methods 136:8–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sauerbrei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauerbrei, A., Stefanski, J., Philipps, A. et al. Monitoring prevalence of varicella-zoster virus clades in Germany. Med Microbiol Immunol 200, 99–107 (2011). https://doi.org/10.1007/s00430-010-0178-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-010-0178-6

Keywords

Navigation