Advertisement

Medical Microbiology and Immunology

, Volume 199, Issue 3, pp 145–154 | Cite as

Genome dynamics and its impact on evolution of Escherichia coli

  • Ulrich DobrindtEmail author
  • M. Geddam Chowdary
  • G. Krumbholz
  • J. Hacker
Review

Abstract

The Escherichia coli genome consists of a conserved part, the so-called core genome, which encodes essential cellular functions and of a flexible, strain-specific part. Genes that belong to the flexible genome code for factors involved in bacterial fitness and adaptation to different environments. Adaptation includes increase in fitness and colonization capacity. Pathogenic as well as non-pathogenic bacteria carry mobile and accessory genetic elements such as plasmids, bacteriophages, genomic islands and others, which code for functions required for proper adaptation. Escherichia coli is a very good example to study the interdependency of genome architecture and lifestyle of bacteria. Thus, these species include pathogenic variants as well as commensal bacteria adapted to different host organisms. In Escherichia coli, various genetic elements encode for pathogenicity factors as well as factors, which increase the fitness of non-pathogenic bacteria. The processes of genome dynamics, such as gene transfer, genome reduction, rearrangements as well as point mutations contribute to the adaptation of the bacteria into particular environments. Using Escherichia coli model organisms, such as uropathogenic strain 536 or commensal strain Nissle 1917, we studied mechanisms of genome dynamics and discuss these processes in the light of the evolution of microbes.

Keywords

Virulence Pathogenicity islands Mobile genetic elements Commensalism Escherichia coli 

Notes

Acknowledgments

The authors would like to thank the German Research Foundation for their support. Work of the authors was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 479.

References

The references marked with an asterisk result from the work within project part A1 of the collaborative research center (SFB) 479

  1. 1.
    *Ahmed N, Dobrindt U, Hacker J et al (2008) Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol 6:387–394PubMedCrossRefGoogle Scholar
  2. 2.
    Bach S, De Almeida A, Carniel E (2000) The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett 183:289–294PubMedCrossRefGoogle Scholar
  3. 3.
    Bailey MJ, Hughes C, Koronakis V (1997) RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol Microbiol 26:845–851PubMedCrossRefGoogle Scholar
  4. 4.
    Banos RC, Vivero A, Aznar S et al (2009) Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS. PLoS Genet 5:e1000513PubMedCrossRefGoogle Scholar
  5. 5.
    Beloin C, Deighan P, Doyle M et al (2003) Shigella flexneri 2a strain 2457T expresses three members of the H-NS-like protein family: characterization of the Sfh protein. Mol Genet Genomics 270:66–77PubMedCrossRefGoogle Scholar
  6. 6.
    Bergthorsson U, Ochman H (1998) Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol 15:6–16PubMedGoogle Scholar
  7. 7.
    Biswas T, Aihara H, Radman-Livaja M et al (2005) A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435:1059–1066PubMedCrossRefGoogle Scholar
  8. 8.
    Blum G, Ott M, Lischewski A et al (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606–614PubMedGoogle Scholar
  9. 9.
    Boyd EF, Almagro-Moreno S, Parent MA (2009) Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol 17:47–53PubMedCrossRefGoogle Scholar
  10. 10.
    *Brzuszkiewicz E, Brüggemann H, Liesegang H et al (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103:12879–12884PubMedCrossRefGoogle Scholar
  11. 11.
    *Brzuszkiewicz E, Gottschalk G, Ron EZ et al (2009) Adaptation of pathogenic E. coli to various niches: genome flexibility is the key. Genome Dynamics 6:110–125PubMedCrossRefGoogle Scholar
  12. 12.
    Buchrieser C, Prentice M, Carniel E (1998) The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J Bacteriol 180:2321–2329PubMedGoogle Scholar
  13. 13.
    Connolly KM, Wojciak JM, Clubb RT (1998) Site-specific DNA binding using a variation of the double stranded RNA binding motif. Nat Struct Biol 5:546–550PubMedCrossRefGoogle Scholar
  14. 14.
    Craig NL, Nash HA (1984) E. coli integration host factor binds to specific sites in DNA. Cell 39:707–716PubMedCrossRefGoogle Scholar
  15. 15.
    *Dobrindt U (2005) (Patho-)Genomics of Escherichia coli. Int J Med Microbiol 295:357–371PubMedCrossRefGoogle Scholar
  16. 16.
    *Dobrindt U, Blum-Oehler G, Nagy G et al (2002) Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect Immun 70:6365–6372PubMedCrossRefGoogle Scholar
  17. 17.
    *Dobrindt U, Hacker J (2001) Regulation of tRNA5Leu-encoding gene leuX that is associated with a pathogenicity island in the uropathogenic Escherichia coli strain 536. Mol Genet Genomics 265:895–904PubMedCrossRefGoogle Scholar
  18. 18.
    *Dobrindt U, Hochhut B, Hentschel U et al (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424PubMedCrossRefGoogle Scholar
  19. 19.
    Dorman CJ (2007) H-NS, the genome sentinel. Nat Rev Microbiol 5:157–161PubMedCrossRefGoogle Scholar
  20. 20.
    Elliott SJ, Wainwright LA, Mcdaniel TK et al (1998) The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28:1–4PubMedCrossRefGoogle Scholar
  21. 21.
    Fadeev EA, Sam MD, Clubb RT (2009) NMR structure of the amino-terminal domain of the lambda integrase protein in complex with DNA: immobilization of a flexible tail facilitates beta-sheet recognition of the major groove. J Mol Biol 388:682–690PubMedCrossRefGoogle Scholar
  22. 22.
    Gal-Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8:1707–1719PubMedCrossRefGoogle Scholar
  23. 23.
    Gärtner JF, Schmidt MA (2004) Comparative analysis of locus of enterocyte effacement pathogenicity islands of atypical enteropathogenic Escherichia coli. Infect Immun 72:6722–6728PubMedCrossRefGoogle Scholar
  24. 24.
    *Grozdanov L, Raasch C, Schulze J et al (2004) Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol 186:5432–5441PubMedCrossRefGoogle Scholar
  25. 25.
    Guyer DM, Kao JS, Mobley HL (1998) Genomic analysis of a pathogenicity island in uropathogenic Escherichia coli CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis, and Catheter-associated bacteriuria and from fecal samples. Infect Immun 66:4411–4417PubMedGoogle Scholar
  26. 26.
    *Hacker J, Blum-Oehler G, Mühldorfer I et al (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097PubMedCrossRefGoogle Scholar
  27. 27.
    *Hacker J, Hentschel U, Dobrindt U (2003) Prokaryotic chromosomes and disease. Science 301:790–793PubMedCrossRefGoogle Scholar
  28. 28.
    *Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679PubMedCrossRefGoogle Scholar
  29. 29.
    Heeb S, Itoh Y, Nishijyo T et al (2000) Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13:232–237PubMedCrossRefGoogle Scholar
  30. 30.
    *Hejnova J, Dobrindt U, Nemcova R et al (2005) Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31). Microbiology 151:385–398PubMedCrossRefGoogle Scholar
  31. 31.
    *Hochhut B, Wilde C, Balling G et al (2006) Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol Microbiol 61:584–595PubMedCrossRefGoogle Scholar
  32. 32.
    *Homburg S, Oswald E, Hacker J et al (2007) Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol Lett 275:255–262PubMedCrossRefGoogle Scholar
  33. 33.
    Janka A, Bielaszewska M, Dobrindt U et al (2003) Cytolethal distending toxin gene cluster in enterohemorrhagic Escherichia coli O157:H- and O157:H7: characterization and evolutionary considerations. Infect Immun 71:3634–3638PubMedCrossRefGoogle Scholar
  34. 34.
    Jores J, Rumer L, Kiessling S et al (2001) A novel locus of enterocyte effacement (LEE) pathogenicity island inserted at pheV in bovine Shiga toxin-producing Escherichia coli strain O103:H2. FEMS Microbiol Lett 204:75–79PubMedCrossRefGoogle Scholar
  35. 35.
    Jores J, Rumer L, Wieler LH (2004) Impact of the locus of enterocyte effacement pathogenicity island on the evolution of pathogenic Escherichia coli. Int J Med Microbiol 294:103–113PubMedCrossRefGoogle Scholar
  36. 36.
    Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140PubMedCrossRefGoogle Scholar
  37. 37.
    Landraud L, Gibert M, Popoff MR et al (2003) Expression of cnf1 by Escherichia coli J96 involves a large upstream DNA region including the hlyCABD operon, and is regulated by the RfaH protein. Mol Microbiol 47:1653–1667PubMedCrossRefGoogle Scholar
  38. 38.
    Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417PubMedCrossRefGoogle Scholar
  39. 39.
    Leeds JA, Welch RA (1996) RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J Bacteriol 178:1850–1857PubMedGoogle Scholar
  40. 40.
    Lucchini S, Rowley G, Goldberg MD et al (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2:e81PubMedCrossRefGoogle Scholar
  41. 41.
    *Middendorf B, Blum-Oehler G, Dobrindt U et al (2001) The pathogenicity islands (PAIs) of the uropathogenic Escherichia coli strain 536: island probing of PAI II536. J Infect Dis 183(Suppl 1):S17–20PubMedCrossRefGoogle Scholar
  42. 42.
    *Middendorf B, Hochhut B, Leipold K et al (2004) Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 186:3086–3096PubMedCrossRefGoogle Scholar
  43. 43.
    Moulin-Schouleur M, Reperant M, Laurent S et al (2007) Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 45:3366–3376PubMedCrossRefGoogle Scholar
  44. 44.
    *Müller CM, Dobrindt U, Nagy G et al (2006) Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J Bacteriol 188:5428–5438PubMedCrossRefGoogle Scholar
  45. 45.
    *Müller CM, Schneider G, Dobrindt U et al (2010) Differential effects and interactions of endogenous and horizontally acquired H-NS-like proteins in pathogenic Escherichia coli. Mol Microbiol 75:280–293PubMedCrossRefGoogle Scholar
  46. 46.
    Müller D, Benz I, Liebchen A et al (2009) Comparative analysis of the locus of enterocyte effacement and its flanking regions. Infect Immun 77:3501–3513PubMedCrossRefGoogle Scholar
  47. 47.
    Müller D, Greune L, Heusipp G et al (2007) Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl Environ Microbiol 73:3380–3390PubMedCrossRefGoogle Scholar
  48. 48.
    *Nagy G, Danino V, Dobrindt U et al (2006) Down-regulation of key virulence factors makes the Salmonella enterica serovar Typhimurium rfaH mutant a promising live-attenuated vaccine candidate. Infect Immun 74:5914–5925PubMedCrossRefGoogle Scholar
  49. 49.
    *Nagy G, Dobrindt U, Hacker J et al (2004) Oral immunization with an rfaH mutant elicits protection against salmonellosis in mice. Infect Immun 72:4297–4301PubMedCrossRefGoogle Scholar
  50. 50.
    *Nagy G, Dobrindt U, Schneider G et al (2002) Loss of regulatory protein RfaH attenuates virulence of uropathogenic Escherichia coli. Infect Immun 70:4406–4413PubMedCrossRefGoogle Scholar
  51. 51.
    *Nagy G, Palkovics T, Otto A et al (2008) “Gently rough”: the vaccine potential of a Salmonella enterica regulatory lipopolysaccharide mutant. J Infect Dis 198:1699–1706PubMedCrossRefGoogle Scholar
  52. 52.
    *Nougayrede JP, Homburg S, Taieb F et al (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851PubMedCrossRefGoogle Scholar
  53. 53.
    Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedCrossRefGoogle Scholar
  54. 54.
    Ogura Y, Ooka T, Asadulghani et al (2007) Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol 8:R138PubMedCrossRefGoogle Scholar
  55. 55.
    Ohnishi M, Terajima J, Kurokawa K et al (2002) Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci USA 99:17043–17048PubMedCrossRefGoogle Scholar
  56. 56.
    Olesen B, Kolmos HJ, Ørskov F et al (1998) Escherichia coli bacteraemia in patients with and without haematological malignancies: a study of strain characters and recurrent episodes. J Infect 36:93–100PubMedCrossRefGoogle Scholar
  57. 57.
    Perna NT, Plunkett G III, Burland V et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533PubMedCrossRefGoogle Scholar
  58. 58.
    *Putze J, Hennequin C, Nougayrede JP et al (2009) Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 77:4696–4703PubMedCrossRefGoogle Scholar
  59. 59.
    Rajakumar K, Sasakawa C, Adler B (1997) Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect Immun 65:4606–4614PubMedGoogle Scholar
  60. 60.
    Rasko DA, Rosovitz MJ, Myers GS et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893PubMedCrossRefGoogle Scholar
  61. 61.
    Rendon MA, Saldana Z, Erdem AL et al (2007) Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci USA 104:10637–10642PubMedCrossRefGoogle Scholar
  62. 62.
    *Ritter A, Gally DL, Olsen PB et al (1997) The Pai-associated leuX specific tRNA5(Leu) affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression. Mol Microbiol 25:871–882PubMedCrossRefGoogle Scholar
  63. 63.
    Roos V, Nielsen EM, Klemm P (2006) Asymptomatic bacteriuria Escherichia coli strains: adhesins, growth and competition. FEMS Microbiol Lett 262:22–30PubMedCrossRefGoogle Scholar
  64. 64.
    Roos V, Ulett GC, Schembri MA et al (2006) The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine. Infect Immun 74:615–624PubMedCrossRefGoogle Scholar
  65. 65.
    Saier MH Jr (1995) Differential codon usage: a safeguard against inappropriate expression of specialized genes? FEBS Lett 362:1–4PubMedCrossRefGoogle Scholar
  66. 66.
    Sakellaris H, Luck SN, Al-Hasani K et al (2004) Regulated site-specific recombination of the she pathogenicity island of Shigella flexneri. Mol Microbiol 52:1329–1336PubMedCrossRefGoogle Scholar
  67. 67.
    Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56PubMedCrossRefGoogle Scholar
  68. 68.
    *Schneider G, Dobrindt U, Brüggemann H et al (2004) The pathogenicity island-associated K15 capsule determinant exhibits a novel genetic structure and correlates with virulence in uropathogenic Escherichia coli strain 536. Infect Immun 72:5993–6001PubMedCrossRefGoogle Scholar
  69. 69.
    Schubert S, Dufke S, Sorsa J et al (2004) A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol Microbiol 51:837–848PubMedCrossRefGoogle Scholar
  70. 70.
    Schubert S, Rakin A, Karch H et al (1998) Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66:480–485PubMedGoogle Scholar
  71. 71.
    Soler Bistue AJ, Birshan D, Tomaras AP et al (2008) Klebsiella pneumoniae multiresistance plasmid pMET1: similarity with the Yersinia pestis plasmid pCRY and integrative conjugative elements. PLoS One 3:e1800PubMedCrossRefGoogle Scholar
  72. 72.
    Szwagierczak A, Antonenka U, Popowicz GM et al (2009) Structures of the arm-type binding domains of HPI and HAI7 integrases. J Biol Chem 284:31664–31671 Google Scholar
  73. 73.
    Tauschek M, Strugnell RA, Robins-Browne RM (2002) Characterization and evidence of mobilization of the LEE pathogenicity island of rabbit-specific strains of enteropathogenic Escherichia coli. Mol Microbiol 44:1533–1550PubMedCrossRefGoogle Scholar
  74. 74.
    Tobe T, Beatson SA, Taniguchi H et al (2006) An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 103:14941–14946PubMedCrossRefGoogle Scholar
  75. 75.
    Toth I, Herault F, Beutin L et al (2003) Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (Type IV). J Clin Microbiol 41:4285–4291PubMedCrossRefGoogle Scholar
  76. 76.
    Touchon M, Hoede C, Tenaillon O et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344PubMedCrossRefGoogle Scholar
  77. 77.
    Welch RA, Burland V, Plunkett G 3rd et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024PubMedCrossRefGoogle Scholar
  78. 78.
    *Wilde C, Mazel D, Hochhut B et al (2008) Delineation of the recombination sites necessary for integration of pathogenicity islands II and III into the Escherichia coli 536 chromosome. Mol Microbiol 68:139–151PubMedCrossRefGoogle Scholar
  79. 79.
    Wojciak JM, Sarkar D, Landy A et al (2002) Arm-site binding by lambda -integrase: solution structure and functional characterization of its amino-terminal domain. Proc Natl Acad Sci USA 99:3434–3439PubMedCrossRefGoogle Scholar
  80. 80.
    Yin S, Bushman W, Landy A (1985) Interaction of the lambda site-specific recombination protein Xis with attachment site DNA. Proc Natl Acad Sci USA 82:1040–1044PubMedCrossRefGoogle Scholar
  81. 81.
    *Zdziarski J, Svanborg C, Wullt B et al (2008) Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation? Infect Immun 76:695–703PubMedCrossRefGoogle Scholar
  82. 82.
    *Zhang Y, Laing C, Steele M et al (2007) Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8:121PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ulrich Dobrindt
    • 1
    Email author
  • M. Geddam Chowdary
    • 1
  • G. Krumbholz
    • 1
  • J. Hacker
    • 1
    • 2
  1. 1.Institute for Molecular Biology of Infectious DiseasesUniversity of WürzburgWürzburgGermany
  2. 2.German Academy of Sciences LeopoldinaHalle/SaaleGermany

Personalised recommendations