Medical Microbiology and Immunology

, Volume 199, Issue 3, pp 273–281

Subsets, expansion and activation of myeloid-derived suppressor cells

  • Eliana Ribechini
  • Verena Greifenberg
  • Sarah Sandwick
  • Manfred B. Lutz
Review

Abstract

Tumor cells and microorganisms manipulate the immune system to minimize any counter response in order to survive. Myeloid-derived suppressor cells (MDSC) in the mouse represent activated Gr-1+ CD11b+ myeloid precursor cells. Activation may occur through endogenous or exogenous factors leading to the suppression of immune responses. Under steady state conditions the same precursors differentiate into dendritic cells, macrophages and neutrophils. Their linkage to tumor progression and several suppression mechanisms employing the arginine metabolism are well documented, but knowledge of their role in chronic infections, autoimmune diseases and graft-versus-host reactions is just emerging. Several factors have been described to promote MDSC expansion and activation in bone marrow, spleen and tumor sites. New evidence suggests that the Gr-1 antibody itself may differentially trigger myelopoiesis under steady state conditions or induce apoptosis in inflammatory situations after binding to a common epitope expressed on Ly-6C and Ly-6G molecules, respectively. Moreover, two subsets of neutrophil- and monocyte-related MDSC have been described in tumor-bearing and healthy mice. In the present review, we summarize some early work leading to recent findings on these two MDSC subsets, the factors supporting MDSC expansion and activation, as well as novel insights on Gr-1 antibody functions.

Keywords

Myeloid-derived suppressor cells Bone marrow spleen Activation Myelopoiesis 

References

  1. 1.
    Subiza JL, Vinuela JE, Rodriguez R, Gil J, Figueredo MA, De La Concha EG (1989) Development of splenic natural suppressor (NS) cells in ehrlich tumor-bearing mice. Int J Cancer 44(2):307–314PubMedCrossRefGoogle Scholar
  2. 2.
    Strober S (1984) Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annl Rev Immunol 2:219–237CrossRefGoogle Scholar
  3. 3.
    Slavin S, Strober S (1979) Induction of allograft tolerance after total lymphoid irradiation (TLI): development of suppressor cells of the mixed leukocyte reaction (MLR). J Immunol 123(2):942–946PubMedGoogle Scholar
  4. 4.
    Roder JC, Duwe AK, Bell DA, Singhal SK (1978) Immunological senescence. I. The role of suppressor cells. Immunology 35(5):837–847Google Scholar
  5. 5.
    Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425; author reply 426Google Scholar
  6. 6.
    Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166PubMedCrossRefGoogle Scholar
  7. 7.
    Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53–65PubMedCrossRefGoogle Scholar
  8. 8.
    Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber D, Schneck J, Gabrilovich D (2007) Altered recognition of antigen is a mechanism of CD8(+) T cell tolerance in cancer. Natur Med 13(7):828–835CrossRefGoogle Scholar
  9. 9.
    Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Natur Rev 4(12):941–952CrossRefGoogle Scholar
  10. 10.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Natur Rev 9(3):162–174CrossRefGoogle Scholar
  11. 11.
    Fleming TJ, Fleming ML, Malek TR (1993) Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 151(5):2399–2408Google Scholar
  12. 12.
    Gumley TP, McKenzie IF, Sandrin MS (1995) Tissue expression, structure and function of the murine Ly-6 family of molecules. Immunol Cell Biol 73(4):277–296PubMedCrossRefGoogle Scholar
  13. 13.
    Havran WL, Lancki DW, Moldwin RL, Dialynas DP, Fitch FW (1988) Characterization of an anti-Ly-6 monoclonal antibody which defines and activates cytolytic T lymphocytes. J Immunol 140(4):1034–1042PubMedGoogle Scholar
  14. 14.
    Yamamoto Y, Ishigaki H, Ishida H, Itoh Y, Noda Y, Ogasawara K (2008) Analysis of splenic Gr-1(int) immature myeloid cells in tumor-bearing mice. Microbiol Immunol 52(1):47–53PubMedCrossRefGoogle Scholar
  15. 15.
    Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244PubMedCrossRefGoogle Scholar
  16. 16.
    Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802PubMedGoogle Scholar
  17. 17.
    Yang R, Cai Z, Zhang Y, WHt Yutzy, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b + myeloid cells. Cancer Res 66(13):6807–6815PubMedCrossRefGoogle Scholar
  18. 18.
    Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1 + CD115 + immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131PubMedCrossRefGoogle Scholar
  19. 19.
    Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8 + T cells. J Clin Invest 116(10):2777–2790PubMedCrossRefGoogle Scholar
  20. 20.
    Greifenberg V, Ribechini E, Rößner S, Lutz MB (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39:2865–2876PubMedCrossRefGoogle Scholar
  21. 21.
    Ribechini E, Leenen PJ, Lutz MB (2009) Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells. Eur J Immunol 39(12):3538–3551PubMedCrossRefGoogle Scholar
  22. 22.
    Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55(3):237–245PubMedCrossRefGoogle Scholar
  23. 23.
    Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176(6):1693–1702PubMedCrossRefGoogle Scholar
  24. 24.
    Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Garcia-Prats MD, DeLeo AB, Lotze MT (1997) Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 15:94–103PubMedCrossRefGoogle Scholar
  25. 25.
    Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223(1):77–92PubMedCrossRefGoogle Scholar
  26. 26.
    Lutz MB, Suri RM, Niimi M, Ogilvie AL, Kukutsch NA, Rossner S, Schuler G, Austyn JM (2000) Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 30(7):1813–1822PubMedCrossRefGoogle Scholar
  27. 27.
    Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T, Grabbe S (1999) Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 162(1):168–175Google Scholar
  28. 28.
    Rößner S, Voigtländer C, Wiethe C, Hänig J, Seifarth C, Lutz MB (2005) Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35(12):3533–3544PubMedCrossRefGoogle Scholar
  29. 29.
    Steptoe RJ, Ritchie JM, Jones LK, Harrison LC (2005) Autoimmune diabetes is suppressed by transfer of proinsulin-encoding Gr-1 + myeloid progenitor cells that differentiate in vivo into resting dendritic cells. Diabetes 54(2):434–442PubMedCrossRefGoogle Scholar
  30. 30.
    Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28(5):509–554PubMedCrossRefGoogle Scholar
  31. 31.
    Abdalla AO, Kiaii S, Hansson L, Rossmann ED, Jeddi-Tehrani M, Shokri F, Osterborg A, Mellstedt H, Rabbani H (2003) Kinetics of cytokine gene expression in human CD4 + and CD8 + T-lymphocyte subsets using quantitative real-time PCR. Scand J Immunol 58(6):601–606PubMedCrossRefGoogle Scholar
  32. 32.
    Morris MA, Ley K (2004) Trafficking of natural killer cells. Curr Mol Med 4(4):431–438PubMedCrossRefGoogle Scholar
  33. 33.
    de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Ait-Yahia S, Banchereau J, Liu YJ, Lebecque S, Caux C (1998) The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 160(4):1666–1676PubMedGoogle Scholar
  34. 34.
    Merchav S, Apte RN, Tatarsky I, Ber R (1987) Effect of plasmacytoma cells on the production of granulocyte-macrophage colony-stimulating activity (GM-CSA) in the spleen of tumor-bearing mice. Exp Hematol 15(9):995–1000PubMedGoogle Scholar
  35. 35.
    Fu YX, Watson G, Jimenez JJ, Wang Y, Lopez DM (1990) Expansion of immunoregulatory macrophages by granulocyte-macrophage colony-stimulating factor derived from a murine mammary tumor. Cancer Res 50(2):227–234PubMedGoogle Scholar
  36. 36.
    Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, Restifo NP (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8 + T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728–5737Google Scholar
  37. 37.
    Smith CW, Chen Z, Dong G, Loukinova E, Pegram MY, Nicholas-Figueroa L, Van Waes C (1998) The host environment promotes the development of primary and metastatic squamous cell carcinomas that constitutively express proinflammatory cytokines IL-1alpha, IL-6, GM-CSF, and KC. Clin Exp Metastasis 16(7):655–664PubMedCrossRefGoogle Scholar
  38. 38.
    Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64(17):6337–6343PubMedCrossRefGoogle Scholar
  39. 39.
    Young MR, Wright MA, Young ME (1991) Antibodies to colony-stimulating factors block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells. Cancer Immunol Immunother 33(3):146–152PubMedCrossRefGoogle Scholar
  40. 40.
    Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L (2007) Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18(2):226–232PubMedCrossRefGoogle Scholar
  41. 41.
    Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22–35PubMedCrossRefGoogle Scholar
  42. 42.
    Toi M, Kondo S, Suzuki H, Yamamoto Y, Inada K, Imazawa T, Taniguchi T, Tominaga T (1996) Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77(6):1101–1106PubMedCrossRefGoogle Scholar
  43. 43.
    Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103PubMedCrossRefGoogle Scholar
  44. 44.
    Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166PubMedGoogle Scholar
  45. 45.
    Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101(12):4878–4886PubMedCrossRefGoogle Scholar
  46. 46.
    Roland CL, Lynn KD, Toombs JE, Dineen SP, Udugamasooriya DG, Brekken RA (2009) Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS One 4(11):e7669PubMedCrossRefGoogle Scholar
  47. 47.
    Chan G, Boyle JO, Yang EK, Zhang F, Sacks PG, Shah JP, Edelstein D, Soslow RA, Koki AT, Woerner BM, Masferrer JL, Dannenberg AJ (1999) Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 59(5):991–994PubMedGoogle Scholar
  48. 48.
    Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89(12):2637–2645PubMedCrossRefGoogle Scholar
  49. 49.
    Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182(6):3801–3808PubMedCrossRefGoogle Scholar
  51. 51.
    Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124(11):2621–2633PubMedCrossRefGoogle Scholar
  52. 52.
    Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168(2):689–695PubMedGoogle Scholar
  53. 53.
    Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003) L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24(6):302–306PubMedCrossRefGoogle Scholar
  54. 54.
    Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182(1):240–249PubMedGoogle Scholar
  55. 55.
    Young MR, Wright MA, Coogan M, Young ME, Bagash J (1992) Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor beta. Cancer Immunol Immunother 35(1):14–18PubMedCrossRefGoogle Scholar
  56. 56.
    Maeda H, Shiraishi A (1996) TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol 156(1):73–78PubMedGoogle Scholar
  57. 57.
    Alleva DG, Walker TM, Elgert KD (1995) Induction of macrophage suppressor activity by fibrosarcoma-derived transforming growth factor-beta 1: contrasting effects on resting and activated macrophages. J Leukoc Biol 57(6):919–928PubMedGoogle Scholar
  58. 58.
    Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell 13(1):23–35PubMedCrossRefGoogle Scholar
  59. 59.
    Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111(1):219–228PubMedCrossRefGoogle Scholar
  60. 60.
    Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, Kamimura D, Ueda N, Iwakura Y, Ishihara K, Murakami M, Hirano T (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173(6):3844–3854PubMedGoogle Scholar
  61. 61.
    Young MR, Newby M, Wepsic HT (1987) Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 47(1):100–105PubMedGoogle Scholar
  62. 62.
    Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102(6):2138–2145PubMedCrossRefGoogle Scholar
  63. 63.
    Lissoni P, Vigore L, Ferranti R, Bukovec R, Meregalli S, Mandala M, Barni S, Tancini G, Fumagalli L, Giani L (1999) Circulating dendritic cells in early and advanced cancer patients: diminished percent in the metastatic disease. J Biol Regul Homeost Agents 13(4):216–219PubMedGoogle Scholar
  64. 64.
    Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766PubMedGoogle Scholar
  65. 65.
    Salvadori S, Martinelli G, Zier K (2000) Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol 164(4):2214–2220PubMedGoogle Scholar
  66. 66.
    Seung LP, Rowley DA, Dubey P, Schreiber H (1995) Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA 92(14):6254–6258PubMedCrossRefGoogle Scholar
  67. 67.
    Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, Berzofsky JA (2003) Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198(11):1741–1752PubMedCrossRefGoogle Scholar
  68. 68.
    Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1 +/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721PubMedCrossRefGoogle Scholar
  69. 69.
    Ouaissi A (2007) Regulatory cells and immunosuppressive cytokines: parasite-derived factors induce immune polarization. J Biomed Biotechnol 2007(4):94971PubMedGoogle Scholar
  70. 70.
    Goni O, Alcaide P, Fresno M (2002) Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+)immature myeloid suppressor cells. Int Immunol 14(10):1125–1134PubMedCrossRefGoogle Scholar
  71. 71.
    Voisin MB, Buzoni-Gatel D, Bout D, Velge-Roussel F (2004) Both expansion of regulatory GR1 + CD11b + myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun 72(9):5487–5492PubMedCrossRefGoogle Scholar
  72. 72.
    al-Ramadi BK, Brodkin MA, Mosser DM, Eisenstein TK (1991) Immunosuppression induced by attenuated Salmonella. Evidence for mediation by macrophage precursors. J Immunol 146(8):2737–2746Google Scholar
  73. 73.
    Mencacci A, Montagnoli C, Bacci A, Cenci E, Pitzurra L, Spreca A, Kopf M, Sharpe AH, Romani L (2002) CD80 + Gr-1 + myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 169(6):3180–3190PubMedGoogle Scholar
  74. 74.
    Stempin CC, Dulgerian LR, Garrido VV, Cerban FM (2010) Arginase in parasitic infections: macrophage activation, immunosuppression, and intracellular signals. J Biomed Biotechnol 2010:683485Google Scholar
  75. 75.
    Zhou Z, French DL, Ma G, Eisenstein S, Chen Y, Divino CM, Keller G, Chen SH, Pan PY (2010) Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells 28(3):620–632PubMedGoogle Scholar
  76. 76.
    Bobe P, Benihoud K, Grandjon D, Opolon P, Pritchard LL, Huchet R (1999) Nitric oxide mediation of active immunosuppression associated with graft-versus-host reaction. Blood 94(3):1028–1037PubMedGoogle Scholar
  77. 77.
    Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M (2003) Transient expansion of Mac1 + Ly6-G + Ly6-C + early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 102(2):740–748PubMedCrossRefGoogle Scholar
  78. 78.
    Marhaba R, Vitacolonna M, Hildebrand D, Baniyash M, Freyschmidt-Paul P, Zoller M (2007) The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 179(8):5071–5081PubMedGoogle Scholar
  79. 79.
    Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, Buer J, Liblau R, Manns MP, Korangy F, Greten TF (2008) Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135(3):871–881, 881 e871–875Google Scholar
  80. 80.
    Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB (2008) Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31(4):354–361PubMedCrossRefGoogle Scholar
  81. 81.
    Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85:996–1004PubMedCrossRefGoogle Scholar
  82. 82.
    Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, Khoury SJ (2007) CD11b + Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 179(8):5228–5237PubMedGoogle Scholar
  83. 83.
    Bowen JL, Olson JK (2009) Innate immune CD11b + Gr-1 + cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease. J Immunol 183(11):6971–6980PubMedCrossRefGoogle Scholar
  84. 84.
    Delano M, Scumpia P, Weinstein J, Coco D, Nagaraj S, Kelly-Scumpia K, O’malley K, Wynn J, Antonenko S, Al-Quran S, Swan R, Chung C, Atkinson M, Ramphal R, Gabrilovich D, Reeves W, Ayala A, Phillips J, Laface D, Heyworth P, Clare-Salzler M, Moldawer L (2007) MyD88-dependent expansion of an immature GR-1 + CD11b + population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204(6):1463–1474PubMedCrossRefGoogle Scholar
  85. 85.
    Imada K, Leonard WJ (2000) The Jak-STAT pathway. Mol Immunol 37(1–2):1–11PubMedCrossRefGoogle Scholar
  86. 86.
    Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3(9):651–662PubMedCrossRefGoogle Scholar
  87. 87.
    Welte T, Koch F, Schuler G, Lechner J, Doppler W, Heufler C (1997) Granulocyte-macrophage colony-stimulating factor induces a unique set of STAT factors in murine dendritic cells. Eur J Immunol 27(10):2737–2740PubMedCrossRefGoogle Scholar
  88. 88.
    Pedrosa J, Saunders BM, Appelberg R, Orme IM, Silva MT, Cooper AM (2000) Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect Immun 68(2):577–583PubMedCrossRefGoogle Scholar
  89. 89.
    Sa-Nunes A, Medeiros AI, Sorgi CA, Soares EG, Maffei CM, Silva CL, Faccioli LH (2007) Gr-1 + cells play an essential role in an experimental model of disseminated histoplasmosis. Microbes Infect 9(12–13):1393–1401PubMedCrossRefGoogle Scholar
  90. 90.
    Martens RJ, Cohen ND, Jones SL, Moore TA, Edwards JF (2005) Protective role of neutrophils in mice experimentally infected with Rhodococcus equi. Infect Immun 73(10):7040–7042PubMedCrossRefGoogle Scholar
  91. 91.
    Conlan JW, North RJ (1994) Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J Exper Med 179(1):259–268CrossRefGoogle Scholar
  92. 92.
    Opferman JT (2007) Life and death during hematopoietic differentiation. Curr Opin Immunol 19(5):497–502PubMedCrossRefGoogle Scholar
  93. 93.
    Edwards SW, Derouet M, Howse M, Moots RJ (2004) Regulation of neutrophil apoptosis by Mcl-1. Biochem Soc Trans 32(Pt3):489–492Google Scholar
  94. 94.
    Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, Restifo NP (1998) Apoptotic death of CD8 + T lymphocytes after immunization: induction of a suppressive population of Mac-1 +/Gr-1 + cells. J Immunol 161(10):5313–5320Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Eliana Ribechini
    • 1
  • Verena Greifenberg
    • 2
  • Sarah Sandwick
    • 1
  • Manfred B. Lutz
    • 1
  1. 1.Institute of Virology and Immunobiology, University of WürzburgWürzburgGermany
  2. 2.Department of DermatologyUniversity Hospital ErlangenErlangenGermany

Personalised recommendations