Medical Microbiology and Immunology

, Volume 199, Issue 3, pp 155–163 | Cite as

Resemblance and divergence: the “new” members of the genus Bordetella



Bordetella pertussis, the etiological agent of whooping cough, belongs to the bacterial pathogens first described in the so-called golden era of microbiology more than 100 years ago. In the course of the following decades, several other closely related pathogens were described which are nowadays classified in the genus Bordetella together with B. pertussis. These are the human and animal pathogens B. parapertussis, B. bronchiseptica and B. avium which are of high medical or veterinary interest, and which, together with B. pertussis, are referred to as the “classical” Bordetella species. Only in the past 15 years, several additional species were classified in the genus, frequently isolated from patients with underlying disease, animals or from the environment. Very little is known about most of these bacteria. In the present review, the current knowledge about these “new” Bordetella species is briefly summarized.


Bordetella Opportunistic pathogens Bacterial virulence Whooping cough Pertussis 


  1. 1.
    Locht C, Antoine R, Jacob-Dubuisson F (2001) Bordetella pertussis, molecular pathogenesis under multiple aspects. Curr Opin Microbiol 4:82–89PubMedCrossRefGoogle Scholar
  2. 2.
    Mattoo S, Cherry JD (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382PubMedCrossRefGoogle Scholar
  3. 3.
    Bjørnstad ON, Harvill ET (2005) Evolution and emergence of Bordetella in humans. Trends Microbiol 13:355–359PubMedCrossRefGoogle Scholar
  4. 4.
    Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeño-Tárraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40PubMedCrossRefGoogle Scholar
  5. 5.
    Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR (2005) Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog 1:e45PubMedCrossRefGoogle Scholar
  6. 6.
    Gerlach G, von Wintzingerode F, Middendorf B, Gross R (2001) Evolutionary trends in the genus Bordetella. Microbes Infect 3:61–72PubMedCrossRefGoogle Scholar
  7. 7.
    von Wintzingerode F, Gerlach G, Schneider B, Gross R (2002) Phylogenetic relationships and virulence evolution in the genus Bordetella. Curr Top Microbiol Immunol 264:177–199Google Scholar
  8. 8.
    Armstrong SK, Gross R (2007) Metabolism and physiology of Bordetella species. In: Locht C (ed) Bordetella: molecular microbiology. Horizon Scientific Press, Norfolk, UK, pp 165–190Google Scholar
  9. 9.
    Shrivastava R, Miller JF (2009) Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol 12:88–93PubMedCrossRefGoogle Scholar
  10. 10.
    Cummings CA, Bootsma HJ, Relman DA, Miller JF (2006) Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol 188:1775–1785PubMedCrossRefGoogle Scholar
  11. 11.
    Aricò B, Rappuoli R (1987) Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J Bacteriol 169:2847–2853PubMedGoogle Scholar
  12. 12.
    Beier D, Gross R (2006) Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9:143–152PubMedCrossRefGoogle Scholar
  13. 13.
    Beier D, Gross R (2008) The BvgS/BvgA phosphor lay system of pathogenic Bordetellae: structure, function and evolution. Adv Exp Med Biol 631:149–160PubMedCrossRefGoogle Scholar
  14. 14.
    Cotter PA, Jones AM (2003) Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 11:367–373PubMedCrossRefGoogle Scholar
  15. 15.
    Aricó B, Miller JF, Roy C, Stibitz S, Monack D, Falkow S, Gross R, Rappuoli R (1989) Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 86:6671–6675PubMedCrossRefGoogle Scholar
  16. 16.
    Bock A, Gross R (2002) The unorthodox histidine kinases BvgS and EvgS are responsive to the oxidation status of a quinone electron carrier. Eur J Biochem 269:3479–3484PubMedCrossRefGoogle Scholar
  17. 17.
    Harrington AT, Castellanos JA, Ziedalski TM, Clarridge JE 3rd, Cookson BT (2009) Isolation of Bordetella avium and novel Bordetella strain from patients with respiratory disease. Emerg Infect Dis 15:72–74PubMedCrossRefGoogle Scholar
  18. 18.
    Spilker T, Liwienski AA, LiPuma JJ (2008) Identification of Bordetella spp. in respiratory specimens from individuals with cystic fibrosis. Clin Microbiol Infect 14:504–506PubMedCrossRefGoogle Scholar
  19. 19.
    Sebaihia M, Preston A, Maskell DJ, Kuzmiak H, Connell TD, King ND, Orndorff PE, Miyamoto DM, Thomson NR, Harris D, Goble A, Lord A, Murphy L, Quail MA, Rutter S, Squares R, Squares S, Woodward J, Parkhill J, Temple LM (2006) Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol 188:6002–6015PubMedCrossRefGoogle Scholar
  20. 20.
    Vandamme P, Hommez J, Vancanneyt M, Monsieurs M, Hoste B, Cookson B, Wirsing von König CH, Kersters K, Blackall PJ (1995) Bordetella hinzii sp. nov., isolated from poultry and humans. Int J Syst Bacteriol 45:37–45PubMedCrossRefGoogle Scholar
  21. 21.
    Register KB, Sacco RE, Nordholm GE (2003) Comparison of ribotyping and restriction enzyme analysis for inter- and intraspecies discrimination of Bordetella avium and Bordetella hinzii. J Clin Microbiol 41:1512–1519PubMedCrossRefGoogle Scholar
  22. 22.
    Register KB, Kunkle RA (2009) Strain-specific virulence of Bordetella hinzii in poultry. Avian Dis 53:50–54PubMedCrossRefGoogle Scholar
  23. 23.
    Cookson BT, Vandamme P, Carlson LC, Larson AM, Sheffield JV, Kersters K, Spach DH (1994) Bacteremia caused by a novel Bordetella species, “B. hinzii”. J Clin Microbiol 32:2569–2571PubMedGoogle Scholar
  24. 24.
    Degand N, Carbonnelle E, Dauphin B, Beretti JL, Le Bourgeois M, Sermet-Gaudelus I, Segonds C, Berche P, Nassif X, Ferroni A (2008) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46:3361–3367PubMedCrossRefGoogle Scholar
  25. 25.
    Hristov AC, Auwaerter PG, Romagnoli M, Carroll KC (2008) Bordetella hinzii septicemia in association with Epstein-Barr virus viremia and an Epstein-Barr virus-associated diffuse large B-cell lymphoma. Diagn Microbiol Infect Dis 61:484–486PubMedCrossRefGoogle Scholar
  26. 26.
    Fry NK, Duncan J, Edwards MT, Tilley RE, Chitnavis D, Harman R, Hammerton H, Dainton L (2007) A UK clinical isolate of Bordetella hinzii from a patient with myelodysplastic syndrome. J Med Microbiol 56:1700–1703PubMedCrossRefGoogle Scholar
  27. 27.
    Hayashimoto N, Yasuda M, Goto K, Takakura A, Itoh T (2008) Study of a Bordetella hinzii isolate from a laboratory mouse. Comp Med 58:440–446PubMedGoogle Scholar
  28. 28.
    Gerlach G, Janzen S, Beier D, Gross R (2004) Functional characterization of the BvgAS two-component system of Bordetella holmesii. Microbiology 150:3715–3729PubMedCrossRefGoogle Scholar
  29. 29.
    Donato GM, Hsia HL, Green CS, Hewlett E (2005) Adenylate cyclase toxin (ACT) from Bordetella hinzii: characterization and differences from ACT of Bordetella pertussis. J Bacteriol 187:7579–7588PubMedCrossRefGoogle Scholar
  30. 30.
    Tang YW, Hopkins MK, Kolbert CP, Hartley PA, Severance PJ, Persing DH (1998) Bordetella holmesii-like organisms associated with septicemia, endocarditis, and respiratory failure. Clin Infect Dis 26(2):389–392PubMedCrossRefGoogle Scholar
  31. 31.
    Weyant RS, Hollis DG, Weaver RE, Amin MF, Steigerwalt AG, O’Connor SP, Whitney AM, Daneshvar MI, Moss CW, Brenner DJ (1995) Bordetella holmesii sp.nov., a new gram-negative species associated with septicemia. J Clin Microbiol 33:1–7PubMedGoogle Scholar
  32. 32.
    Mazengia E, Silva EA, Peppe JA, Timperi R, George H (2000) Recovery of Bordetella holmesii from patients with pertussis-like symptoms: use of pulsed-field gel electrophoresis to characterize circulating strains. J Clin Microbiol 38:2330–2333PubMedGoogle Scholar
  33. 33.
    Yih WK, Silva EA, Ida J, Harrington N, Lett SM, George H (1999) Bordetella holmesii-like organisms isolated from Massachusetts patients with pertussis-like symptoms. Emerg Infect Dis 5:441–443PubMedCrossRefGoogle Scholar
  34. 34.
    Antila M, He Q, de Jong C, Aarts I, Verbakel H, Bruisten S, Keller S, Haanperä M, Mäkinen J, Eerola E, Viljanen MK, Mertsola J, van der Zee A (2006) Bordetella holmesii DNA is not detected in nasopharyngeal swabs from Finnish and Dutch patients with suspected pertussis. J Med Microbiol 55:1043–1051PubMedCrossRefGoogle Scholar
  35. 35.
    Njamkepo E, Delisle F, Hagege I, Gerbaud G, Guiso N (2000) Bordetella holmesii isolated from a patient with sickle cell anemia: analysis and comparison with other Bordetella holmesii isolates. Clin Microbiol Infect 6:131–136PubMedCrossRefGoogle Scholar
  36. 36.
    Shepard CW, Daneshvar MI, Kaiser RM, Ashford DA, Lonsway D, Patel JB, Morey RE, Jordan JG, Weyant RS, Fischer M (2004) Bordetella holmesii bacteremia: a newly recognized clinical entity among asplenic patients. Clin Infect Dis 38:799–804PubMedCrossRefGoogle Scholar
  37. 37.
    McCavit TL, Grube S, Revell P, Quinn CT (2008) Bordetella holmesii bacteremia in sickle cell disease. Pediatr Blood Cancer 51:814–816PubMedCrossRefGoogle Scholar
  38. 38.
    Monnier S, Therby A, Couzon B, Doucet-Populaire F, Greder-Belan A (2009) Bordetella holmesii bacteremia in a 26-year-old patient with sickle cell disease. Med Mal Infect. doi:10.1016/j.medmal.2009.06.002
  39. 39.
    Loeffelholz MJ, Thompson CJ, Long KS, Gilchrist MJ (2000) Detection of Bordetella holmesii using Bordetella pertussis IS481 PCR assay. J Clin Microbiol 38:467PubMedGoogle Scholar
  40. 40.
    Probert WS, Ely J, Schrader K, Atwell J, Nossoff A, Kwan S (2008) Identification and evaluation of new target sequences for specific detection of Bordetella pertussis by real-time PCR. J Clin Microbiol 46:3228–3231PubMedCrossRefGoogle Scholar
  41. 41.
    Tatti KM, Wu KH, Tondella ML, Cassiday PK, Cortese MM, Wilkins PP, Sanden GN (2008) Development and evaluation of dual-target real-time polymerase chain reaction assays to detect Bordetella spp. Diagn Microbiol Infect Dis 61:264–272PubMedCrossRefGoogle Scholar
  42. 42.
    Muyldermans G, Soetens O, Antoine M, Bruisten S, Vincart B, Doucet-Populaire F, Fry NK, Olcén P, Scheftel JM, Senterre JM, van der Zee A, Riffelmann M, Piérard D, Lauwers S (2005) External quality assessment for molecular detection of Bordetella pertussis in European laboratories. J Clin Microbiol 43:30–35PubMedCrossRefGoogle Scholar
  43. 43.
    Vielemeyer O, Crouch JY, Edberg SC, Howe JG (2004) Identification of Bordetella pertussis in a critically ill human immunodeficiency virus-infected patient by direct genotypical analysis of Gram-stained material and discrimination from B. holmesii by using a unique recA gene restriction enzyme site. J Clin Microbiol 42:847–849PubMedCrossRefGoogle Scholar
  44. 44.
    Reischl U, Lehn N, Sanden GN, Loeffelholz MJ (2001) Real-time PCR assay targeting IS481 of Bordetella pertussis and molecular basis for detecting Bordetella holmesii. J Clin Microbiol 39:1963–1966PubMedCrossRefGoogle Scholar
  45. 45.
    Diavatopoulos DA, Cummings CA, van der Heide HG, van Gent M, Liew S, Relman DA, Mooi FR (2006) Characterization of a highly conserved island in the otherwise divergent Bordetella holmesii and Bordetella pertussis genomes. J Bacteriol 188:8385–8394PubMedCrossRefGoogle Scholar
  46. 46.
    Brickman TJ, Hanawa T, Anderson MT, Suhadolc RJ, Armstrong SK (2008) Differential expression of Bordetella pertussis iron transport system genes during infection. Mol Microbiol 70:3–14PubMedCrossRefGoogle Scholar
  47. 47.
    Register KB, Ducey TF, Brockmeier SL, Dyer DW (2001) Reduced virulence of a Bordetella bronchiseptica siderophore mutant in neonatal swine. Infect Immun 69:2137–2143PubMedCrossRefGoogle Scholar
  48. 48.
    Link S, Schmitt K, Beier D, Gross R (2007) Identification and regulation of expression of a gene encoding a filamentous hemagglutinin-related protein in Bordetella holmesii. BMC Microbiol 7:100PubMedCrossRefGoogle Scholar
  49. 49.
    Merkel TJ, Boucher PE, Stibitz S, Grippe VK (2003) Analysis of bvgR expression in Bordetella pertussis. J Bacteriol 185:6902–6912PubMedCrossRefGoogle Scholar
  50. 50.
    Monack DM, Arico B, Rappuoli R, Falkow S (1989) Phase variants of Bordetella bronchiseptica arise by spontaneous deletions in the vir locus. Mol Microbiol 3:1719–1728PubMedCrossRefGoogle Scholar
  51. 51.
    Boucher PE, Maris AE, Yang MS, Stibitz S (2003) The response regulator BvgA and RNA polymerase alpha subunit C-terminal domain bind simultaneously to different faces of the same segment of promoter DNA. Mol Cell 11:163–173PubMedCrossRefGoogle Scholar
  52. 52.
    Horvat A, Gross R (2009) Molecular characterization of the BvgA response regulator of Bordetella holmesii. Microbiol Res 164:243–252PubMedCrossRefGoogle Scholar
  53. 53.
    Hodak H, Jacob-Dubuisson F (2007) Current challenges in auto transport and two-partner protein secretion pathways. Res Microbiol 158:631–637PubMedCrossRefGoogle Scholar
  54. 54.
    Vandamme P, Heyndrickx M, Vancanneyt M, Hoste B, De Vos P, Falsen E, Kersters K, Hinz KH (1996) Bordetella trematum sp. nov., isolated from wounds and ear infections in humans, and reassessment of Alcaligenes denitrificans Rüger and Tan 1983. Int J Syst Bacteriol 46:849–858PubMedCrossRefGoogle Scholar
  55. 55.
    Daxboeck F, Goerzer E, Apfalter P, Nehr M, Krause R (2004) Isolation of Bordetella trematum from a diabetic leg ulcer. Diabet Med 21:1247–1248PubMedCrossRefGoogle Scholar
  56. 56.
    Ko KS, Peck KR, Oh WS, Lee NY, Lee JH, Song JH (2005) New species of Bordetella, Bordetella ansorpii sp. nov., isolated from the purulent exudate of an epidermal cyst. J Clin Microbiol 43:2516–2519PubMedCrossRefGoogle Scholar
  57. 57.
    Fry NK, Duncan J, Malnick H, Cockcroft PM (2007) The first UK isolate of ‘Bordetella ansorpii’ from an immunocompromised patient. J Med Microbiol 56:993–995PubMedCrossRefGoogle Scholar
  58. 58.
    von Wintzingerode F, Schattke A, Siddiqui RA, Rösick U, Göbel UB, Gross R (2001) Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int J Syst Evol Microbiol 51:1257–1265Google Scholar
  59. 59.
    Bianchi F, Careri M, Mustat L, Malcevschi A, Musci M (2005) Bioremediation of toluene and naphthalene: development and validation of a GC-FID method for their monitoring. Ann Chim 95:515–524PubMedCrossRefGoogle Scholar
  60. 60.
    Wang F, Grundmann S, Schmid M, Dörfler U, Roherer S, Charles Munch J, Hartmann A, Jiang X, Schroll R (2007) Isolation and characterization of 1, 2, 4-trichlorobenzene mineralizing Bordetella sp. and its bioremediation potential in soil. Chemosphere 67:896–902PubMedCrossRefGoogle Scholar
  61. 61.
    Yuan SY, Su LM, Chang BV (2009) Biodegradation of phenanthrene and pyrene in compost-amended soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:648–653PubMedGoogle Scholar
  62. 62.
    Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 54:82–90PubMedCrossRefGoogle Scholar
  63. 63.
    Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez J (2005) A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28:242–264PubMedCrossRefGoogle Scholar
  64. 64.
    Fry NK, Duncan J, Malnick H, Warner M, Smith AJ, Jackson MS, Ayoub A (2005) Bordetella petrii clinical isolate. Emerg Infect Dis 11:1131–1133PubMedGoogle Scholar
  65. 65.
    Stark D, Riley LA, Harkness J, Marriott D (2007) Bordetella petrii from a clinical sample in Australia: isolation and molecular identification. J Med Microbiol 56:435–437PubMedCrossRefGoogle Scholar
  66. 66.
    Moissenet D, Bingen E, Arlet G, Vu-Thien H (2005) Use of 16S rRNA gene sequencing for identification of “Pseudomonas-like” isolates from sputum of patients with cystic fibrosis. Pathol Biol (Paris) 53:500–502Google Scholar
  67. 67.
    Gross R, Guzman CA, Sebaihia M, dos Santos VA, Pieper DH, Koebnik R, Lechner M, Bartels D, Buhrmester J, Choudhuri JV, Ebensen T, Gaigalat L, Herrmann S, Khachane AN, Larisch C, Link S, Linke B, Meyer F, Mormann S, Nakunst D, Rückert C, Schneiker-Bekel S, Schulze K, Vorhölter FJ, Yevsa T, Engle JT, Goldman WE, Pühler A, Göbel UB, Goesmann A, Blöcker H, Kaiser O, Martinez-Arias R (2008) The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics 9:449PubMedCrossRefGoogle Scholar
  68. 68.
    Cotter PA, DiRita VJ (2000) Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol 54:519–565PubMedCrossRefGoogle Scholar
  69. 69.
    van der Meer JR, Sentchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14:248–254PubMedCrossRefGoogle Scholar
  70. 70.
    Lechner M, Schmitt K, Bauer S, Hot D, Hubans C, Levillain E, Locht C, Lemoine Y, Gross R (2009) Genomic island excisions in Bordetella petrii. BMC Microbiol 9:141PubMedCrossRefGoogle Scholar
  71. 71.
    Almuzara M, Limansky A, Ballerini V, Galanternik L, Famiglietti A, Vay C (2010) In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. Int J Antimicrob Agents 35:68–71PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Lehrstuhl für Mikrobiologie, Biozentrum Universität WürzburgWürzburgGermany

Personalised recommendations